Proximity testing for Reed–Solomon+

Gal Arnon

Alessandro Chiesa

Giacomo Fenzi

1

• Want to show "knowledge" of w s.t. $(x, w) \in R$

• Want to show "knowledge" of w s.t. $(x, w) \in R$

$(x, w) \in R \quad \text{e.g. } R := \{(x, w) : SHA3(w) = x\}$

• Want to show "knowledge" of w s.t. $(x, w) \in R$

$(x, w) \in R \quad \text{e.g. } R := \{(x, w) : SHA3(w) = x\}$

• Want to show "knowledge" of w s.t. $(x, w) \in R$

• Want to show "knowledge" of w s.t. $(x, w) \in R$

- Want to show "knowledge" of w s.t. $(x, w) \in R$
- Need* to add a random oracle.

- Want to show "knowledge" of w s.t. $(x, w) \in R$
- Need* to add a random oracle.
- Can be based on many computational assumptions.

- Want to show "knowledge" of w s.t. $(x, w) \in R$
- Need* to add a random oracle.
- Can be based on many computational assumptions.
- Today: we limit ourselves to pure ROM SNARKs

- Want to show "knowledge" of w s.t. $(x, w) \in R$
- Need* to add a random oracle.
- Can be based on many computational assumptions.
- Today: we limit ourselves to pure ROM SNARKs
- Will call these hash-based SNARKs.

Instantiating random oracle gives amazing SNARKs:

Instantiating random oracle gives amazing SNARKs:

Transparent setup (choice of hash) ullet

Instantiating random oracle gives amazing SNARKs:

- Transparent setup (choice of hash) \bullet
- Highly efficient implementations (no public-key crypto) \bullet

Instantiating random oracle gives amazing SNARKs:

- Transparent setup (choice of hash)
- Highly efficient implementations (no public-key crypto)
- Plausibly post-quantum secure (secure in QROM) \bullet

Instantiating random oracle gives amazing SNARKs:

- Transparent setup (choice of hash)
- Highly efficient implementations (no public-key crypto)
- Plausibly post-quantum secure (secure in QROM)

Used to secure billions of dollars in real-world blockchains:

Instantiating random oracle gives amazing SNARKs:

- Transparent setup (choice of hash)
- Highly efficient implementations (no public-key crypto)
- Plausibly post-quantum secure (secure in QROM)

Used to secure billions of dollars in real-world blockchains:

5

BCS

Proof length $I \approx O(n)$

Queries $q \approx O(\log n)$

BCS

Large, think 2^{24} Proof length $I \approx O(n)$

Queries $q \approx O(\log n)$ Small, think ~400

Proof length $I \approx O(n)$ Large, thir

Queries $q \approx O(\log n)$ Small, think ~400

$$k 2^{24}$$

Argument size $O(\lambda \cdot \mathbf{q} \cdot \log \mathbf{I})$

Constructing SNARKs [BCS16] Construction

Large, think 2^{24} Proof length $I \approx O(n)$

Queries $q \approx O(\log n)$ Small, think ~400

Small, tens of KiB

Constructing SNARKs [BCS16] Construction

Proof length I $\approx O(n)$ Large, think 2^{24}

Queries $q \approx O(\log n)$ Small, think ~400

5

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

E.g. Aurora, STARK PIOP etc.

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

E.g. Aurora, STARK PIOP etc.

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

E.g. Aurora, STARK PIOP etc.

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

E.g. Aurora, STARK PIOP etc.

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

E.g. Aurora, STARK PIOP etc.

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

E.g. Aurora, STARK PIOP etc.

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

E.g. Aurora, STARK PIOP etc.

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

E.g. Aurora, STARK PIOP etc.

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

E.g. Aurora, STARK PIOP etc.

IOP of Proximity to RS codes

IOP of Proximity to RS codes

 $\mathsf{RS}[n, m, \rho] :=$

IOP of Proximity to RS codes $RS[n, m, \rho] := \begin{cases} Evaluations of polynomials of degree < 2^{m} \\ on a domain L \subseteq \mathbb{F} of size n. \rho := \frac{2^{m}}{n} \end{cases}$

IOP of Proximity to RS codes $RS[n, m, \rho] := \begin{cases} Evaluations of polynomials of degree on a domain <math>L \subseteq \mathbb{F}$ of size $n. \rho := \frac{2^m}{n}$

IOP of Proximity to RS codes $RS[n, m, \rho] := \begin{cases} Evaluations of polynomials of degree < 2^m \\ on a domain <math>L \subseteq \mathbb{F}$ of size $n. \rho := \frac{2^m}{n}$

IOP of Proximity to RS codes $RS[n, m, \rho] := \begin{cases} Evaluations of polynomials of degree < 2^m \\ on a domain <math>L \subseteq \mathbb{F}$ of size $n. \rho := \frac{2^m}{n}$

IOP of Proximity to RS codes $RS[n, m, \rho] := \begin{cases} Evaluations of polynomials of degree < 2^m \\ on a domain <math>L \subseteq \mathbb{F}$ of size $n. \rho := \frac{2^m}{n} \end{cases}$

IOP of Proximity to RS codes $RS[n, m, \rho] := \begin{cases} Evaluations of polynomials of degree < 2^m \\ on a domain <math>L \subseteq \mathbb{F}$ of size $n. \rho := \frac{2^m}{n}$

IOP of Proximity to RS codes $\mathsf{RS}[n, m, \rho] := \langle$ Rate of the code

Evaluations of polynomials of degree 2^m on a domain $L \subseteq \mathbb{F}$ of size $n. \rho :=$ n

- If $f \in \mathsf{RS}[n, m, \rho]$, V accepts.
- If *f* is δ -far from $\text{RS}[n, m, \rho]$, **V** accepts w.p. $\varepsilon_{\text{RBR}} \leq 2^{-\lambda}$

Convenience

IOP of Proximity to RS codes $\mathsf{RS}[n, m, \rho] := \langle$ Rate of the code

Evaluations of polynomials of degree 2^m on a domain $L \subseteq \mathbb{F}$ of size $n. \rho :=$ n

- If $f \in \mathsf{RS}[n, m, \rho]$, V accepts.
- If *f* is δ -far from $\text{RS}[n, m, \rho]$, **V** accepts w.p. $\varepsilon_{\text{RBR}} \leq 2^{-\lambda}$

Goal: minimize queries to *f* and other proof oracles.

Convenience

IOP of Proximity to RS codes $\mathsf{RS}[n, m, \rho] := \langle$ Rate of the code

Evaluations of polynomials of degree $< 2^m$ on a domain $L \subseteq \mathbb{F}$ of size $n. \rho := \frac{2}{m}$ n

- If $f \in \mathsf{RS}[n, m, \rho]$, V accepts.
- If *f* is δ -far from $\text{RS}[n, m, \rho]$, **V** accepts w.p. $\varepsilon_{\text{RBR}} \leq 2^{-\lambda}$

Round by round, required by BCS transform.

Convenience

Goal: minimize queries to *f* and other proof oracles.

What we are running:

Reed-Solomon Proximity Test on virtual function: $f'(x) := \frac{f(x) - y}{x - z}$

What we are running:

Reed-Solomon Proximity Test on virtual function: f(x) - yf'(x) := $\overline{X} - \overline{Z}$

What we really want to show:

I have a polynomial \hat{f} and a commitment to (an encoding of it) f such that $\hat{f}(z) = y$

What we are running:

Reed-Solomon Proximity Test on virtual function: f(x) - yf'(x) := $\overline{X} - \overline{Z}$

Break it down as:

Test for constrained encoding

What we really want to show:

I have a polynomial \hat{f} and a commitment to (an encoding of it) f such that $\hat{f}(z) = y$

What we are running:

Reed-Solomon Proximity Test on virtual function: f(x) - yf'(x) := $\overline{X} - \overline{Z}$

Break it down as:

Test for constrained encoding f(x) - yQuotient f'(x) := $\overline{X-Z}$

What we really want to show:

I have a polynomial \hat{f} and a commitment to (an encoding of it) f such that $\hat{f}(z) = y$

Constrained RS tests

What we are running:

Break it down as:

What we really want to show:

I have a polynomial \hat{f} and a commitment to (an encoding of it) f such that $\hat{f}(z) = y$

Constrained RS tests

What we are running:

Break it down as:

What we really want to show:

I have a polynomial \hat{f} and a commitment to (an encoding of it) f such that $\hat{f}(z) = y$

> We are designing a proximity test just to check this constraint.

Constrained RS tests

What we are running:

Break it down as:

What we really want to show:

I have a polynomial \hat{f} and a commitment to (an encoding of it) f such that $\hat{f}(z) = y$

> We are designing a proximity test just to check this constraint.

Can we move the constraint directly into the IOPP?

$\mathsf{RS}[n, m, \rho] := \left\{ \begin{array}{l} \text{Evaluations of univariate} \\ \hat{f} \in \mathbb{F}^{<2^m}[X] \text{ on } L \end{array} \right\}$

$\mathsf{RS}[n, m, \rho] := \left\{ \begin{array}{l} \text{Evaluations of univariate} \\ \hat{f} \in \mathbb{F}^{<2^m}[X] \text{ on } L \end{array} \right\}$

 $\mathsf{RS}[n, m, \rho] := \left\{ \begin{array}{l} \text{Evaluations of univariate} \\ \hat{f} \in \mathbb{F}^{<2^m}[X] \text{ on } L \end{array} \right\}$ $= \left\{ \begin{array}{l} \text{Evaluations of multilinear} \\ \hat{f} \in \mathbb{F}^{\leq 1}[X_1, \dots, X_m] \text{ on } L \end{array} \right\}$

$\mathsf{RS}[n, m, \rho] := \left\{ \begin{array}{l} \text{Evaluations of univariate} \\ \hat{f} \in \mathbb{F}^{<2^m}[X] \text{ on } L \end{array} \right\}$

 $CRS[n, m, \rho, \hat{w}, \sigma] :=$

- $= \left\{ \begin{array}{l} \text{Evaluations of multilinear} \\ \hat{f} \in \mathbb{F}^{\leq 1}[X_1, \dots, X_m] \text{ on } L \end{array} \right\}$

$CRS[n, m, \rho, \hat{w}, \sigma] :=$

- $= \left\{ \begin{array}{l} \text{Evaluations of multilinear} \\ \hat{f} \in \mathbb{F}^{\leq 1}[X_1, \dots, X_m] \text{ on } L \end{array} \right\}$

- $= \left\{ \begin{array}{l} \text{Evaluations of multilinear} \\ \hat{f} \in \mathbb{F}^{\leq 1}[X_1, \dots, X_m] \text{ on } L \end{array} \right\}$

$$\sum_{b \in \{0,1\}^m} \hat{w}(\hat{f}(b), b) = c$$

 $RS[n, m, \rho] = CRS[n, m, \rho, 0, 0]$

$$\sum_{b \in \{0,1\}^m} \hat{w}(\hat{f}(b), b) = c$$

 $RS[n, m, \rho] = CRS[n, m, \rho, 0, 0]$

Rewrite RS codes to be about multilinear polynomials: $\operatorname{coeff}(\hat{p}) = \operatorname{coeff}(\hat{q})$ implies that $\hat{p}(z) = \hat{q}(z, z^2, ..., z^{2^{m-1}})$

If $\hat{w} = Z \cdot eq(\mathbf{X}, \mathbf{r})$ we recover multilinear polynomial evaluation

Rounds: O(m)

Alphabet: \mathbb{F}^{2^k}

Proof length: $O(n/2^k)$

Rounds: O(m)

Alphabet: \mathbb{F}^{2^k}

Proof length: $O(n/2^k)$

Rounds: O(m)

Alphabet: \mathbb{F}^{2^k}

Proof length: $O(n/2^k)$

Rounds: O(m)

Alphabet: \mathbb{F}^{2^k}

Proof length: $O(n/2^k)$

Comparison with prior work

	Queries	Verifier Time	Alphabet
BaseFold	$q_{\rm BF} = O(\lambda \cdot m)$	$O(\mathbf{q}_{BF})$	\mathbb{F}^2
FRI	$q_{\rm FRI} = O\left(\frac{\lambda}{k} \cdot m\right)$	$O(\mathbf{q}_{FRI} \cdot 2^k)$	\mathbb{F}^{2^k}
STIR	$q_{\rm STIR} = O\left(\frac{\lambda}{k} \cdot \log m\right)$	$O(q_{\text{STIR}} \cdot 2^k + \lambda^2 \cdot 2^k)$	\mathbb{F}^{2^k}
WHIR	$q_{\rm WHIR} = O\left(\frac{\lambda}{k} \cdot \log m\right)$	$O(\mathbf{q}_{WHIR} \cdot (2^k + m))$	\mathbb{F}^{2^k}

FRI: $O\left(\frac{\lambda}{k} \cdot m\right)$

STIR & WHIR $O\left(\frac{\lambda}{k} \cdot \log m\right)$

FRI: $O\left(\frac{\lambda}{k} \cdot m\right)$ **Comparison to STIR and FRI STIR & WHIR** $O\left(\frac{\lambda}{k} \cdot \log m\right)$

Drop-in replacement of FRI and STIR (when used for CRS[$\mathbb{F}, m, \rho, 0, 0$])

- **Same** benefits as STIR over FRI, and similar prover time.

FRI: $O\left(\frac{\lambda}{k} \cdot m\right)$

STIR & WHIR $O\left(\frac{\lambda}{k} \cdot \log m\right)$

Drop-in replacement of FRI and STIR (when used for CRS[F, $m, \rho, 0, 0$])

- **Drop-in** replacement of FRI and STIR (when used for CRS[F, $m, \rho, 0, 0$])
- **Same** benefits as STIR over FRI, and similar prover time.
- Additionally, richer proximity tests means that:

FRI: $O\left(\frac{\lambda}{k} \cdot m\right)$

STIR & WHIR $O\left(\frac{\lambda}{k} \cdot \log m\right)$

- **Drop-in** replacement of FRI and STIR (when used for CRS[F, $m, \rho, 0, 0$])
- **Same** benefits as STIR over FRI, and similar prover time.
- Additionally, richer proximity tests means that:
 - Can be used as a **multilinear** PCS (instead of BaseFold, FRI-Binius, etc)

FRI:
$$O\left(\frac{\lambda}{k} \cdot m\right)$$

STIR & WHIR $O\left(\frac{\lambda}{k} \cdot \log m\right)$

- **Drop-in** replacement of FRI and STIR (when used for CRS[F, $m, \rho, 0, 0$])
- **Same** benefits as STIR over FRI, and similar prover time.
- Additionally, richer proximity tests means that:
 - Can be used as a **multilinear** PCS (instead of BaseFold, FRI-Binius, etc)
 - Can be used in compiler for Σ -IOP (extra slides)

FRI:
$$O\left(\frac{\lambda}{k} \cdot m\right)$$

STIR & WHIR
$$O\left(\frac{\lambda}{k} \cdot \log k\right)$$

- **Drop-in** replacement of FRI and STIR (when used for CRS[F, $m, \rho, 0, 0$])
- **Same** benefits as STIR over FRI, and similar prover time.
- Additionally, richer proximity tests means that:
 - Can be used as a **multilinear** PCS (instead of BaseFold, FRI-Binius, etc)
 - Can be used in compiler for Σ -IOP (extra slides)
- Further, super-fast verification (next)

FRI:
$$O\left(\frac{\lambda}{k} \cdot m\right)$$

STIR & WHIR $O\left(\frac{\lambda}{k} \cdot \log m\right)$


```
Whir (PCS) 🍸
Field: Goldilocks2 and MT: Blake3
Number of variables: 20, folding factor: 4
Security level: 100 bits using ConjectureList security and 19 bits of PoW
initial_folding_pow_bits: 0
Num_queries: 41, rate: 2^-2, pow_bits: 18, ood_samples: 2, folding_pow: 0
Num_queries: 17, rate: 2^-5, pow_bits: 15, ood_samples: 2, folding_pow: 2
Num_queries: 11, rate: 2^-8, pow_bits: 12, ood_samples: 2, folding_pow: 4
Num_queries: 8, rate: 2^-11, pow_bits: 12, ood_samples: 2, folding_pow: 6
final_queries: 6, final_rate: 2^-14, final_pow_bits: 16, final_folding_pow_bits: 0
_____
Round by round soundness analysis:
 _____
167.0 bits -- OOD commitment
102.0 bits -- (x4) prox gaps: 103.0, sumcheck: 102.0, pow: 0.0
171.0 bits -- OOD sample
100.0 bits -- query error: 82.0, combination: 94.6, pow: 18.0
100.0 bits -- (x4) prox gaps: 101.0, sumcheck: 100.0, pow: 0.0
175.0 bits -- OOD sample
100.0 bits -- query error: 85.0, combination: 93.8, pow: 15.0
100.0 bits -- (x4) prox gaps: 99.0, sumcheck: 98.0, pow: 2.0
179.0 bits -- OOD sample
100.0 bits -- query error: 88.0, combination: 92.3, pow: 12.0
100.0 bits -- (x4) prox gaps: 97.0, sumcheck: 96.0, pow: 4.0
183.0 bits -- OOD sample
100.0 bits -- query error: 88.0, combination: 90.7, pow: 12.0
100.0 bits -- (x4) prox gaps: 95.0, sumcheck: 94.0, pow: 6.0
100.0 bits -- query error: 84.0, pow: 16.0
Prover time: 356.9ms
Proof size: 58.7 KiB
Verifier time: 342.8µs
Average hashes: 1.1k
```

Rust k implementation, available at <u>WizardOfMenlo/whir</u>


```
Whir (PCS) 🛐
Field: Goldilocks2 and MT: Blake3
Number of variables: 20, folding factor: 4
Security level: 100 bits using ConjectureList security and 19 bits of PoW
initial_folding_pow_bits: 0
Num_queries: 41, rate: 2^-2, pow_bits: 18, ood_samples: 2, folding_pow: 0
Num_queries: 17, rate: 2^-5, pow_bits: 15, ood_samples: 2, folding_pow: 2
Num_queries: 11, rate: 2<sup>-8</sup>, pow_bits: 12, ood_samples: 2, folding_pow: 4
Num_queries: 8, rate: 2^-11, pow_bits: 12, ood_samples: 2, folding_pow: 6
final_queries: 6, final_rate: 2^-14, final_pow_bits: 16, final_folding_pow_bits: 0
 _____
Round by round soundness analysis:
 _____
167.0 bits -- OOD commitment
102.0 bits -- (x4) prox gaps: 103.0, sumcheck: 102.0, pow: 0.0
171.0 bits -- OOD sample
100.0 bits -- query error: 82.0, combination: 94.6, pow: 18.0
100.0 bits -- (x4) prox gaps: 101.0, sumcheck: 100.0, pow: 0.0
175.0 bits -- OOD sample
100.0 bits -- query error: 85.0, combination: 93.8, pow: 15.0
100.0 bits -- (x4) prox gaps: 99.0, sumcheck: 98.0, pow: 2.0
179.0 bits -- OOD sample
100.0 bits -- query error: 88.0, combination: 92.3, pow: 12.0
100.0 bits -- (x4) prox gaps: 97.0, sumcheck: 96.0, pow: 4.0
183.0 bits -- OOD sample
100.0 bits -- query error: 88.0, combination: 90.7, pow: 12.0
100.0 bits -- (x4) prox gaps: 95.0, sumcheck: 94.0, pow: 6.0
100.0 bits -- query error: 84.0, pow: 16.0
Prover time: 356.9ms
Proof size: 58.7 KiB
Verifier time: 342.8µs
Average hashes: 1.1k
```

- Rust see implementation, available at <u>WizardOfMenlo/whir</u>
- <u>Arkworks</u> as backend, (extension of) Goldilocks for benchmarks


```
Whir (PCS) 🌖
Field: Goldilocks2 and MT: Blake3
Number of variables: 20, folding factor: 4
Security level: 100 bits using ConjectureList security and 19 bits of PoW
initial_folding_pow_bits: 0
Num_queries: 41, rate: 2^-2, pow_bits: 18, ood_samples: 2, folding_pow: 0
Num_queries: 17, rate: 2^-5, pow_bits: 15, ood_samples: 2, folding_pow: 2
Num_queries: 11, rate: 2<sup>-8</sup>, pow_bits: 12, ood_samples: 2, folding_pow: 4
Num_queries: 8, rate: 2^-11, pow_bits: 12, ood_samples: 2, folding_pow: 6
final_queries: 6, final_rate: 2^-14, final_pow_bits: 16, final_folding_pow_bits: 0
 _____
Round by round soundness analysis:
 -----
167.0 bits -- OOD commitment
102.0 bits -- (x4) prox gaps: 103.0, sumcheck: 102.0, pow: 0.0
171.0 bits -- OOD sample
100.0 bits -- query error: 82.0, combination: 94.6, pow: 18.0
100.0 bits -- (x4) prox gaps: 101.0, sumcheck: 100.0, pow: 0.0
175.0 bits -- OOD sample
100.0 bits -- query error: 85.0, combination: 93.8, pow: 15.0
100.0 bits -- (x4) prox gaps: 99.0, sumcheck: 98.0, pow: 2.0
 179.0 bits -- OOD sample
100.0 bits -- query error: 88.0, combination: 92.3, pow: 12.0
100.0 bits -- (x4) prox gaps: 97.0, sumcheck: 96.0, pow: 4.0
183.0 bits -- OOD sample
100.0 bits -- query error: 88.0, combination: 90.7, pow: 12.0
100.0 bits -- (x4) prox gaps: 95.0, sumcheck: 94.0, pow: 6.0
100.0 bits -- query error: 84.0, pow: 16.0
Prover time: 356.9ms
Proof size: 58.7 KiB
Verifier time: 342.8µs
Average hashes: 1.1k
```

- Rust see implementation, available at <u>WizardOfMenlo/whir</u>
- Arkworks as backend, (extension of) Goldilocks for benchmarks
 - Huge thanks to Remco Bloemen!!!


```
Whir (PCS) 툇
Field: Goldilocks2 and MT: Blake3
Number of variables: 20, folding factor: 4
Security level: 100 bits using ConjectureList security and 19 bits of PoW
initial_folding_pow_bits: 0
Num_queries: 41, rate: 2<sup>-2</sup>, pow_bits: 18, ood_samples: 2, folding_pow: 0
Num_queries: 17, rate: 2^-5, pow_bits: 15, ood_samples: 2, folding_pow: 2
Num_queries: 11, rate: 2<sup>-8</sup>, pow_bits: 12, ood_samples: 2, folding_pow: 4
Num_queries: 8, rate: 2<sup>-11</sup>, pow_bits: 12, ood_samples: 2, folding_pow: 6
final_queries: 6, final_rate: 2^-14, final_pow_bits: 16, final_folding_pow_bits: 0
 -----
Round by round soundness analysis:
 -----
167.0 bits -- OOD commitment
102.0 bits -- (x4) prox gaps: 103.0, sumcheck: 102.0, pow: 0.0
171.0 bits -- 00D sample
100.0 bits -- query error: 82.0, combination: 94.6, pow: 18.0
100.0 bits -- (x4) prox gaps: 101.0, sumcheck: 100.0, pow: 0.0
175.0 bits -- OOD sample
100.0 bits -- query error: 85.0, combination: 93.8, pow: 15.0
100.0 bits -- (x4) prox gaps: 99.0, sumcheck: 98.0, pow: 2.0
 179.0 bits -- OOD sample
100.0 bits -- query error: 88.0, combination: 92.3, pow: 12.0
100.0 bits -- (x4) prox gaps: 97.0, sumcheck: 96.0, pow: 4.0
183.0 bits -- OOD sample
100.0 bits -- query error: 88.0, combination: 90.7, pow: 12.0
100.0 bits -- (x4) prox gaps: 95.0, sumcheck: 94.0, pow: 6.0
100.0 bits -- query error: 84.0, pow: 16.0
Prover time: 356.9ms
Proof size: 58.7 KiB
Verifier time: 342.8µs
Average hashes: 1.1k
```

- Rust see implementation, available at <u>WizardOfMenlo/whir</u>
- <u>Arkworks</u> as backend, (extension of) Goldilocks for benchmarks
 - Huge thanks to Remco Bloemen!!!
- We compared to FRI, STIR and BaseFold.


```
Whir (PCS) 🌖
Field: Goldilocks2 and MT: Blake3
Number of variables: 20, folding factor: 4
Security level: 100 bits using ConjectureList security and 19 bits of PoW
initial_folding_pow_bits: 0
Num_queries: 41, rate: 2<sup>-2</sup>, pow_bits: 18, ood_samples: 2, folding_pow: 0
Num_queries: 17, rate: 2<sup>-5</sup>, pow_bits: 15, ood_samples: 2, folding_pow: 2
Num_queries: 11, rate: 2<sup>-8</sup>, pow_bits: 12, ood_samples: 2, folding_pow: 4
Num_queries: 8, rate: 2^-11, pow_bits: 12, ood_samples: 2, folding_pow: 6
final_queries: 6, final_rate: 2^-14, final_pow_bits: 16, final_folding_pow_bits: 0
 Round by round soundness analysis:
 167.0 bits -- OOD commitment
 102.0 bits -- (x4) prox gaps: 103.0, sumcheck: 102.0, pow: 0.0
171.0 bits -- OOD sample
100.0 bits -- query error: 82.0, combination: 94.6, pow: 18.0
100.0 bits -- (x4) prox gaps: 101.0, sumcheck: 100.0, pow: 0.0
175.0 bits -- OOD sample
100.0 bits -- query error: 85.0, combination: 93.8, pow: 15.0
100.0 bits -- (x4) prox gaps: 99.0, sumcheck: 98.0, pow: 2.0
 179.0 bits -- OOD sample
100.0 bits -- query error: 88.0, combination: 92.3, pow: 12.0
100.0 bits -- (x4) prox gaps: 97.0, sumcheck: 96.0, pow: 4.0
 183.0 bits -- OOD sample
 100.0 bits -- query error: 88.0, combination: 90.7, pow: 12.0
100.0 bits -- (x4) prox gaps: 95.0, sumcheck: 94.0, pow: 6.0
100.0 bits -- query error: 84.0, pow: 16.0
Prover time: 356.9ms
Proof size: 58.7 KiB
Verifier time: 342.8µs
Average hashes: 1.1k
```

Super fast verifier

Super fast verifier

• The WHIR verifier typically runs in a few hundred microseconds.

Super fast verifier

- The WHIR verifier typically runs in a few hundred microseconds.
- Other verifiers require several milliseconds (and more).
- The WHIR verifier typically runs in a few hundred microseconds.
- Other verifiers require several milliseconds (and more).
- Without compromising prover time & argument size

- The WHIR verifier typically runs in a few hundred microseconds.
- Other verifiers require several milliseconds (and more).
- Without compromising prover time & argument size
- As a PCS for degree 2^{22} , 100 bits of security:

- The WHIR verifier typically runs in a few hundred microseconds.
- Other verifiers require several milliseconds (and more).
- Without compromising prover time & argument size
- As a PCS for degree 2^{22} , 100 bits of security:

Prover time: ~1s (MacBook Air) Commit & open: 63 KiB Verifier time: 270 μs (0.27 ms)

- The WHIR verifier typically runs in a few hundred microseconds.
- Other verifiers require several milliseconds (and more).
- Without compromising prover time & argument size
- As a PCS for degree 2^{24} :

Verifier time (ms)	Brakedown	Ligero	Greyhound	Hyrax	PST	KZG	WHIR- $1/2$	WHIR-1/16
$\lambda = 100$	3500	733	-	100	7.81	2.42	0.61	0.29
$\lambda = 128$	3680	750	130	151	9.92	3.66	1.4	0.6

Table 4: Comparison of WHIR-CB's verifier time versus other polynomial commitment schemes, on 24 variables. For the KZG degree 2^{24} is used instead.

Schemes with trusted setup using pairings!

Comparison with BaseFold

Prover time

Comparison with BaseFold

Prover time

Remark: BaseFold implementation is not fully optimised

128-bits security level.

 $\lambda = 106 + 22$ bits of PoW + "list-decoding" assumptions.

18

128-bits security level.

 $\lambda = 106 + 22$ bits of PoW + "list-decoding" assumptions.

$m = 24, \rho = 1/4$	FRI	WHIR
Size (KiB)	177	106
Verifier time	2.4ms	700µs

18

128-bits security level.

 $\lambda = 106 + 22$ bits of PoW + "list-decoding" assumptions.

$m = 24, \rho = 1/4$	FRI	WHIR
Size (KiB)	177	106
Verifier time	2.4ms	700µs
$d = 30, \rho = 1/2$	FRI	WHIR
$d = 30, \rho = 1/2$ Size (KiB)	FRI 494	WHIR 187

18

128-bits security level.

 $\lambda = 106 + 22$ bits of PoW + "list-decoding" assumptions.

$m = 24, \rho = 1/4$	FRI	WHIR
Size (KiB)	177	106
Verifier time	2.4ms	700µs
$d = 30, \rho = 1/2$	FRI	WHIR
Size (KiB)	494	187

 $\rho = 1/2$

Figure 2: Comparison of FRI, STIR and WHIR for $\rho = 1/2$. FRI: \times , STIR: \bullet , WHIR-CB: \blacktriangle . Pro time is displayed with logarithmic scaling.

Conclusion

WHIR Stanew IOPP for CRS codes.

WHIR Stanew IOPP for CRS codes.

Query complexity:

$$O\left(\frac{\lambda}{k} \cdot \log m\right)$$

$$O(q_{\text{whir}} \cdot (2^k + m))$$

WHIR Stanew IOPP for CRS codes.

State-of-the-art argument size and hash complexity

Query complexity:

$$O\left(\frac{\lambda}{k}\cdot\log m\right)$$

$$O(q_{\rm whir} \cdot (2^k + m))$$

WHIR S: a new IOPP for CRS codes.

- State-of-the-art argument size and hash complexity
- **Fastest** verification of any PCS (including trusted setups!)

Query complexity:

$$O\left(\frac{\lambda}{k}\cdot\log m\right)$$

$$O(q_{\text{whir}} \cdot (2^k + m))$$

WHIR S: a new IOPP for CRS codes.

- State-of-the-art argument size and hash complexity
- Fastest verification of any PCS (including trusted setups!)
- Enables high-soundness compilation for Σ-IOP

Query complexity:

$$O\left(\frac{\lambda}{k} \cdot \log m\right)$$

$$O(q_{\text{WHIR}} \cdot (2^k + m))$$

How? Inspiration from FFTs, for k = 1:

$$\mathsf{Fold}(f, \alpha) := f_{\mathsf{odd}} + \alpha \cdot f_{\mathsf{even}}$$

Can extend to every k that is a power of two.

How? Inspiration from FFTs, for k = 1:

$$\mathsf{Fold}(f, \alpha) := f_{\mathsf{odd}} + \alpha \cdot f_{\mathsf{even}}$$

Can extend to every k that is a power of two.

$$\mathsf{Fold}(f, \alpha) := f_{\mathsf{odd}} + \alpha \cdot f_{\mathsf{even}}$$

How? Inspiration from FFTs, for k = 1:

$$\mathsf{Fold}(f, \alpha) := f_{\mathsf{odd}} + \alpha \cdot f_{\mathsf{even}}$$

Can extend to every k that is a power of two.

Properties:

Local: compute Fold(f, α)(z) at any point $z \in L^{2^k}$ with 2^k queries to f.

 $\delta \in \left(0, 1 - \sqrt{\rho}\right)$

Distance preservation: if f is δ -far from $RS[n, m, \rho]$, then w.h.p. $Fold(f, \alpha)$ remains also δ -far from RS[$n/2^k, m-k, \rho$]

How? Inspiration from FFTs, for k = 1:

$$\mathsf{Fold}(f, \alpha) := f_{\mathsf{odd}} + \alpha \cdot f_{\mathsf{even}}$$

Can extend to every k that is a power of two.

Properties:

Local: compute Fold(f, α)(z) at any point $z \in L^{2^k}$ with 2^k queries to f.

 $\delta \in \left(0, 1 - \sqrt{\rho}\right)$

Distance preservation: if f is δ -far from $RS[n, m, \rho]$, then w.h.p. $Fold(f, \alpha)$ remains also δ -far from RS[$n/2^k, m-k, \rho$]

Unless w.p. $\approx \frac{\text{poly}(n,2^m)}{n}$ fraction of "corrupted" entries does not decrease.

$$\mathsf{Fold}(f, \alpha) := f_{\mathsf{odd}} + \alpha \cdot f_{\mathsf{even}}$$

Test a random linear combination

Test a random linear combination

 f_1

Test a random linear combination

Test a random linear combination

Test a random linear combination

if w.h.p. $\Delta(f^*, \mathscr{C}) \leq \delta$:
Test a random linear combination

if w.h.p. $\Delta(f^*, \mathscr{C}) \leq \delta$:

Test a random linear combination

if w.h.p. $\Delta(f^*, \mathscr{C}) \leq \delta$:

Agreement: then $\Delta(f_i, \mathscr{C}) \leq \delta$.

Test a random linear combination

if w.h.p. $\Delta(f^*, \mathscr{C}) \leq \delta$:

Agreement: then $\Delta(f_i, \mathscr{C}) \leq \delta$.

Test a random linear combination

if w.h.p. $\Delta(f^*, \mathscr{C}) \leq \delta$:

Agreement: then $\Delta(f_i, \mathscr{C}) \leq \delta$.

Correlated agreement: then f_1, \ldots, f_m agree with \mathscr{C} on the same "stripe"

Test a random linear combination

if w.h.p. $\Delta(f^*, \mathscr{C}) \leq \delta$:

Agreement: then $\Delta(f_i, \mathscr{C}) \leq \delta$.

Correlated agreement: then f_1, \ldots, f_m agree with \mathscr{C} on the same "stripe"

Test a random linear combination

if w.h.p. $\Delta(f^*, \mathscr{C}) \leq \delta$:

Agreement: then $\Delta(f_i, \mathscr{C}) \leq \delta$.

Correlated agreement: then f_1, \ldots, f_m agree with \mathscr{C} on the same "stripe"

Test a random linear combination

if w.h.p. $\Delta(f^*, \mathscr{C}) \leq \delta$:

Agreement: then $\Delta(f_i, \mathscr{C}) \leq \delta$.

Correlated agreement: then f_1, \ldots, f_m agree with \mathscr{C} on the same "stripe"

Mutual correlated agreement: the stripe in which f_1, \ldots, f_m agree with \mathscr{C} is the same on which f^* does:

"No new correlated domains appear"

Implied by mutual correlated agreement

Implied by mutual correlated agreement

 $f_1, \dots, f_m \colon L \to \mathbb{F}$

Implied by mutual correlated agreement

 $f_1, \dots, f_m \colon L \to \mathbb{F}$

 $\Lambda(\mathscr{C}, f, \delta)$ is the list of codewords of $\mathscr C$ that are δ -close to f

Taking lists and (random) combinations commute (if • mutual correlated agreement holds).

Implied by mutual correlated agreement

 $\Lambda(\mathscr{C}, f, \delta)$ is the list of codewords of $\mathscr C$ that are δ -close to f

Taking lists and (random) combinations commute (if • mutual correlated agreement holds).

Implied by mutual correlated agreement

 $\Lambda(\mathscr{C}, f, \delta)$ is the list of codewords of $\mathscr C$ that are δ -close to f

Taking lists and (random) combinations **commute** (if • mutual correlated agreement holds).

Implied by mutual correlated agreement

 $\Lambda(\mathscr{C}, f, \delta)$ is the list of codewords of $\mathscr C$ that are δ -close to f

Taking lists and (random) combinations **commute** (if mutual correlated agreement holds).

Implied by mutual correlated agreement

 $\Lambda(\mathscr{C}, f, \delta)$ is the list of codewords of $\mathscr C$ that are δ -close to f

Taking lists and (random) combinations **commute** (if lacksquaremutual correlated agreement holds).

Implied by mutual correlated agreement

 $\Lambda(\mathscr{C}, f, \delta)$ is the list of codewords of $\mathscr C$ that are δ -close to f

Taking lists and (random) combinations commute (if mutual correlated agreement holds).

Implied by mutual correlated agreement

 $\Lambda(\mathscr{C}, f, \delta)$ is the list of codewords of $\mathscr C$ that are δ -close to f

Taking lists and (random) combinations commute (if ulletmutual correlated agreement holds).

Implied by mutual correlated agreement

- Taking lists and (random) combinations commute (if mutual correlated agreement holds).
- Random linear combination version: w.h.p. over r: $\Lambda(\mathscr{C}, \langle \mathbf{f}, \mathbf{r} \rangle, \delta) = \left\{ \langle \mathbf{u}, \mathbf{r} \rangle : \mathbf{u} \in \Lambda(\mathscr{C}^m, \mathbf{f}, \delta) \right\}$

Implied by mutual correlated agreement

- Taking lists and (random) combinations commute (if mutual correlated agreement holds).
- Random linear combination version: w.h.p. over r: $\Lambda(\mathscr{C}, \langle \mathbf{f}, \mathbf{r} \rangle, \delta) = \left\{ \langle \mathbf{u}, \mathbf{r} \rangle : \mathbf{u} \in \Lambda(\mathscr{C}^m, \mathbf{f}, \delta) \right\}$
- Folding version: w.h.p. over α : $\Lambda(\mathscr{C}, \mathsf{Fold}(f, \alpha), \delta) = \big\{\mathsf{Fold}(u, \alpha) : u \in \Lambda(\mathscr{C}, f, \delta)\big\}$

Implied by mutual correlated agreement

- Taking lists and (random) combinations commute (if mutual correlated agreement holds).
- Random linear combination version: w.h.p. over r: $\Lambda(\mathscr{C}, \langle \mathbf{f}, \mathbf{r} \rangle, \delta) = \{ \langle \mathbf{u}, \mathbf{r} \rangle : \mathbf{u} \in \Lambda(\mathscr{C}^m, \mathbf{f}, \delta) \}$
- Folding version: w.h.p. over α : $\Lambda(\mathscr{C}, \mathsf{Fold}(f, \alpha), \delta) = \big\{ \mathsf{Fold}(u, \alpha) : u \in \Lambda(\mathscr{C}, f, \delta) \big\}$
- Alternatively, each term in the l.h.s can be "explained" by terms in the r.h.s.

Implied by mutual correlated agreement

- Taking lists and (random) combinations commute (if mutual correlated agreement holds).
- Random linear combination version: w.h.p. over r: $\Lambda(\mathscr{C}, \langle \mathbf{f}, \mathbf{r} \rangle, \delta) = \{ \langle \mathbf{u}, \mathbf{r} \rangle : \mathbf{u} \in \Lambda(\mathscr{C}^m, \mathbf{f}, \delta) \}$
- Folding version: w.h.p. over α : $\Lambda(\mathscr{C},\mathsf{Fold}(f,\alpha),\delta) = \big\{\mathsf{Fold}(u,\alpha): u \in \Lambda(\mathscr{C},f,\delta)\big\}$
- Alternatively, each term in the l.h.s can be "explained" by terms in the r.h.s.
- We show correlated agreement implies mutual correlated agreement in *unique decoding*.

Implied by mutual correlated agreement

- Taking lists and (random) combinations commute (if mutual correlated agreement holds).
- Random linear combination version: w.h.p. over r: $\Lambda(\mathscr{C}, \langle \mathbf{f}, \mathbf{r} \rangle, \delta) = \{ \langle \mathbf{u}, \mathbf{r} \rangle : \mathbf{u} \in \Lambda(\mathscr{C}^m, \mathbf{f}, \delta) \}$
- Folding version: w.h.p. over α : $\Lambda(\mathscr{C},\mathsf{Fold}(f,\alpha),\delta) = \big\{\mathsf{Fold}(u,\alpha): u \in \Lambda(\mathscr{C},f,\delta)\big\}$
- Alternatively, each term in the l.h.s can be "explained" by terms in the r.h.s.
- We show correlated agreement implies mutual correlated agreement in *unique decoding*.

Implied by mutual correlated agreement

 $\Lambda(\mathscr{C}, f, \delta)$ is the list of codewords of $\mathscr C$ that are δ -close to f

- Taking lists and (random) combinations commute (if mutual correlated agreement holds).
- Random linear combination version: w.h.p. over r: $\Lambda(\mathscr{C}, \langle \mathbf{f}, \mathbf{r} \rangle, \delta) = \{ \langle \mathbf{u}, \mathbf{r} \rangle : \mathbf{u} \in \Lambda(\mathscr{C}^m, \mathbf{f}, \delta) \}$
- Folding version: w.h.p. over α : $\Lambda(\mathscr{C},\mathsf{Fold}(f,\alpha),\delta) = \big\{\mathsf{Fold}(u,\alpha): u \in \Lambda(\mathscr{C},f,\delta)\big\}$
- Alternatively, each term in the l.h.s can be "explained" by terms in the r.h.s.
- We show correlated agreement implies mutual correlated agreement in *unique decoding*.

Recent results show it holds up to 1.5 Johnson for general linear codes!

Reduce $CRS[n, m, \rho, \hat{w}, \sigma]$ **to** $CRS[n/2, m - 1, \rho, \hat{w}_{\alpha}, \sigma_{\alpha}]$

Reduce $CRS[n, m, \rho, \hat{w}, \sigma]$ **to** $CRS[n/2, m - 1, \rho, \hat{w}_{\alpha}, \sigma_{\alpha}]$

Reduce $CRS[n, m, \rho, \hat{w}, \sigma]$ **to** $CRS[n/2, m - 1, \rho, \hat{w}_{\alpha}, \sigma_{\alpha}]$

Reduce $CRS[n, m, \rho, \hat{w}, \sigma]$ **to** $CRS[n/2, m - 1, \rho, \hat{w}_{\alpha}, \sigma_{\alpha}]$

$$\hat{h}(X) := \sum_{\mathbf{b} \in \{0,1\}^{m-1}} \hat{w}(\hat{f}(X,\mathbf{b}), X,\mathbf{b})$$
P

Reduce $CRS[n, m, \rho, \hat{w}, \sigma]$ **to** $CRS[n/2, m - 1, \rho, \hat{w}_{\alpha}, \sigma_{\alpha}]$

$$\hat{h}(X) := \sum_{\mathbf{b} \in \{0,1\}^{m-1}} \hat{w}(\hat{f}(X,\mathbf{b}), X, \mathbf{b})$$
P

Reduce $CRS[n, m, \rho, \hat{w}, \sigma]$ **to** $CRS[n/2, m - 1, \rho, \hat{w}_{\alpha}, \sigma_{\alpha}]$

$$\hat{h}(X) := \sum_{\mathbf{b} \in \{0,1\}^{m-1}} \hat{w}(\hat{f}(X, \mathbf{b}), X, \mathbf{b})$$
P

Reduce $CRS[n, m, \rho, \hat{w}, \sigma]$ **to** $CRS[n/2, m - 1, \rho, \hat{w}_{\alpha}, \sigma_{\alpha}]$

Reduce $CRS[n, m, \rho, \hat{w}, \sigma]$ **to** $CRS[n/2, m - 1, \rho, \hat{w}_{\alpha}, \sigma_{\alpha}]$

$$\hat{h}(X) := \sum_{\mathbf{b} \in \{0,1\}^{m-1}} \hat{w}(\hat{f}(X, \mathbf{b}), X, \mathbf{b})$$
P
Completeness:
$$\sum_{\mathbf{b}} \hat{w}(f(\mathbf{b}), \mathbf{b}) = \sigma \text{ then:}$$

•
$$h(0) + h(1) = \sigma$$
,

Reduce $CRS[n, m, \rho, \hat{w}, \sigma]$ **to** $CRS[n/2, m - 1, \rho, \hat{w}_{\alpha}, \sigma_{\alpha}]$

$$\hat{h}(X) := \sum_{\mathbf{b} \in \{0,1\}^{m-1}} \hat{w}(\hat{f}(X, \mathbf{b}), X, \mathbf{b})$$
P
Completeness:
$$\sum_{\mathbf{b}} \hat{w}(f(\mathbf{b}), \mathbf{b}) = \sigma \text{ then:}$$

$$h(0) + h(1) = \sigma,$$

$$\sum_{\mathbf{b}} \hat{w}(f(\alpha, \mathbf{b}), \alpha, \mathbf{b}) = \hat{h}(\alpha)$$

Reduce $CRS[n, m, \rho, \hat{w}, \sigma]$ **to** $CRS[n/2, m - 1, \rho, \hat{w}_{\alpha}, \sigma_{\alpha}]$

$$\hat{h}(X) := \sum_{\mathbf{b} \in \{0,1\}^{m-1}} \hat{w}(\hat{f}(X, \mathbf{b}), X, \mathbf{b})$$
P
Completeness:
$$\sum_{\mathbf{b}} \hat{w}(f(\mathbf{b}), \mathbf{b}) = \sigma \text{ then:}$$

$$h(0) + h(1) = \sigma,$$

$$\sum_{\mathbf{b}} \hat{w}(f(\alpha, \mathbf{b}), \alpha, \mathbf{b}) = \hat{h}(\alpha)$$

• $\sum_{\mathbf{b}} \hat{w}(f(\alpha, \mathbf{b}), \alpha, \mathbf{b}) = h(\alpha)$

• $\widehat{\mathsf{Fold}(f,\alpha)} = \widehat{f}(\alpha,\cdot)$

Reduce $CRS[n, m, \rho, \hat{w}, \sigma]$ **to** $CRS[n/2, m - 1, \rho, \hat{w}_{\alpha}, \sigma_{\alpha}]$

$$\hat{h}(X) := \sum_{\mathbf{b} \in \{0,1\}^{m-1}} \hat{w}(\hat{f}(X, \mathbf{b}), X, \mathbf{b})$$
P
Completeness:
$$\sum_{\mathbf{b}} \hat{w}(f(\mathbf{b}), \mathbf{b}) = \sigma \text{ then:}$$

$$h(0) + h(1) = \sigma,$$

$$\sum_{\mathbf{b}} \hat{w}(f(\alpha, \mathbf{b}), \alpha, \mathbf{b}) = \hat{h}(\alpha)$$

• $\sum_{\mathbf{b}} \hat{w}(f(\alpha, \mathbf{b}), \alpha, \mathbf{b}) = h(\alpha)$

• $\widehat{\mathsf{Fold}(f,\alpha)} = \widehat{f}(\alpha,\cdot)$

Interleave sumcheck with FRI folding, similar to BaseFold, Hyperplonk, Gemini

Soundness: by mutual correlated agreement, w.h.p. if $\Delta(f, CRS[n, m, \rho, \hat{w}, \sigma]) > \delta$ then $\Delta(Fold(f, \alpha), CRS[n/2, m - 1, \rho, \hat{w}_{\alpha}, \hat{h}(\alpha)]) > \delta$

Reduce $CRS[n, m, \rho, \hat{w}, \sigma]$ **to** $CRS[n/2, m - 1, \rho, \hat{w}_{\alpha}, \sigma_{\alpha}]$

$$\hat{h}(X) := \sum_{\mathbf{b} \in \{0,1\}^{m-1}} \hat{w}(\hat{f}(X, \mathbf{b}), X, \mathbf{b})$$
P
Completeness:
$$\sum_{\mathbf{b}} \hat{w}(f(\mathbf{b}), \mathbf{b}) = \sigma \text{ then:}$$

$$h(0) + h(1) = \sigma,$$

$$\sum_{\mathbf{b}} \hat{w}(f(\alpha, \mathbf{b}), \alpha, \mathbf{b}) = \hat{h}(\alpha)$$

• $\sum_{\mathbf{b}} \hat{w}(f(\alpha, \mathbf{b}), \alpha, \mathbf{b}) = h(\alpha)$

• $\widehat{\mathsf{Fold}(f,\alpha)} = \widehat{f}(\alpha,\cdot)$

Interleave sumcheck with FRI folding, similar to BaseFold, Hyperplonk, Gemini

Soundness: by mutual correlated agreement, w.h.p. if $\Delta(f, CRS[n, m, \rho, \hat{w}, \sigma]) > \delta$ then $\Delta(Fold(f, \alpha), CRS[n/2, m - 1, \rho, \hat{w}_{\alpha}, \hat{h}(\alpha)]) > \delta$

 $\hat{w}_{\alpha}(Z, \mathbf{X}) = \hat{w}(Z, \alpha, \mathbf{X})$

Reduce CRS[$n, m, \rho, \hat{w}, \sigma$] to CRS[$n/2, m - 1, \rho, \hat{w}_{\alpha}, \sigma_{\alpha}$]

$$\hat{h}(X) := \sum_{\mathbf{b} \in \{0,1\}^{m-1}} \hat{w}(\hat{f}(X, \mathbf{b}), X, \mathbf{b})$$
P
Completeness:
$$\sum_{\mathbf{b}} \hat{w}(f(\mathbf{b}), \mathbf{b}) = \sigma \text{ then:}$$

$$h(0) + h(1) = \sigma,$$

$$\sum_{\mathbf{b}} \hat{w}(f(\alpha, \mathbf{b}), \alpha, \mathbf{b}) = \hat{h}(\alpha)$$

 $\sum W(f(\alpha, \mathbf{D}), \alpha, \mathbf{D}) = h(\alpha)$

• $\operatorname{Fold}(f, \alpha) = \hat{f}(\alpha, \cdot)$

Interleave sumcheck with FRI folding, similar to BaseFold, Hyperplonk, Gemini

Soundness: by mutual correlated agreement, w.h.p. if $\Delta(f, CRS[n, m, \rho, \hat{w}, \sigma]) > \delta$ then $\Delta(\mathsf{Fold}(f,\alpha),\mathsf{CRS}[n/2,m-1,\rho,\hat{w}_{\alpha},\hat{h}(\alpha)]) > \delta$

 $\hat{w}_{\alpha}(Z, \mathbf{X}) = \hat{w}(Z, \alpha, \mathbf{X})$

Reduce CRS[$n, m, \rho, \hat{w}, \sigma$] to CRS[$n/2, m - 1, \rho, \hat{w}_{\sigma}, \sigma_{\sigma}$]

$$\hat{h}(X) := \sum_{\mathbf{b} \in \{0,1\}^{m-1}} \hat{w}(\hat{f}(X, \mathbf{b}), X, \mathbf{b})$$
P
Completeness:
$$\sum_{\mathbf{b}} \hat{w}(f(\mathbf{b}), \mathbf{b}) = \sigma \text{ then:}$$

$$h(0) + h(1) = \sigma,$$

$$\sum_{\mathbf{b}} \hat{w}(f(\alpha, \mathbf{b}), \alpha, \mathbf{b}) = \hat{h}(\alpha)$$

 $\sum W(J(\alpha, \mathbf{D}), \alpha, \mathbf{D}) = h(\alpha)$

• $\operatorname{Fold}(\widehat{f, \alpha}) = \widehat{f}(\alpha, \cdot)$

Interleave sumcheck with FRI folding, similar to BaseFold, Hyperplonk, Gemini

In the full protocol, we fold by 2-by-2 k times. Can also fold by 2^k at a time (nice for first round!)

Soundness: by mutual correlated agreement, w.h.p. if $\Delta(f, CRS[n, m, \rho, \hat{w}, \sigma]) > \delta$ then $\Delta(\mathsf{Fold}(f,\alpha),\mathsf{CRS}[n/2,m-1,\rho,\hat{w}_{\alpha},\hat{h}(\alpha)]) > \delta$

 $\hat{w}_{\alpha}(Z, \mathbf{X}) = \hat{w}(Z, \alpha, \mathbf{X})$

P

 $\mathsf{Fold}(f, \alpha_1, \dots, \alpha_k)$

P

g

Claimed to be same polynomial

 $Fold(f, \alpha_1, ..., \alpha_k)$

P

8

Claimed to be same polynomial

 $Fold(f, \alpha_1, ..., \alpha_k)$

P

8

Claimed to be same polynomial

 $Fold(f, \alpha_1, ..., \alpha_k)$

P

g

Claimed to be same polynomial

 $\mathsf{Fold}(f, \alpha_1, \dots, \alpha_k)$

P

8

Claimed to be same polynomial

 $\mathsf{Fold}(f, \alpha_1, \ldots, \alpha_k)$

P

8

Claimed to be same polynomial

Similar structure to STIR! Multilinear structure forbids using quotients: we need new ideas to domain shift!

 $Fold(f, \alpha_1, ..., \alpha_k)$

P

8

Claimed to be same polynomial

Claim on $f:(\hat{w},\sigma)$

Claim on $f:(\hat{w},\sigma)$

Claim on $f:(\hat{w},\sigma)$

Output claims on *g*: $(\hat{w}_1, \sigma_1), \dots, (\hat{w}_{\ell}, \sigma_{\ell})$

Domain shifting $f: L \to \mathbb{F}$ Claim on $f: (\hat{w}, \sigma)$

f and *g* claimed to be evaluations of same polynomial. Want to output **claims** on *g*. **Goal:** If f is $\left(1 - \sqrt{\rho}\right)$ -far from CRS[$|L|, m, \rho, \hat{w}, \sigma$], w.h.p. *g* is $\left(1 - \sqrt{\rho'}\right)$ -far form least one $i \in [\ell]$

Output claims on *g*: $(\hat{w}_1, \sigma_1), \dots, (\hat{w}_{\ell}, \sigma_{\ell})$

], w.h.p. g is
$$\left(1 - \sqrt{\rho'}\right)$$
-far from CRS[|L*|, $m, \rho', \hat{w}_i, \sigma_i$]

Domain shifting $f: L \to \mathbb{F}$ Claim on $f:(\hat{w},\sigma)$

f and g claimed to be evaluations of same polynomial. Want to output claims on g. **Goal:** If *f* is $(1 - \sqrt{\rho})$ -far from CRS[|*L*|, *m*, ρ , \hat{w} , σ] least one $i \in [\ell]$

Assume there is unique polynomial \hat{p} that is $\left(1 - \sqrt{\rho'}\right)$ -close to g.

Output claims on *g*: $(\hat{w}_1, \sigma_1), \ldots, (\hat{w}_\ell, \sigma_\ell)$

|, w.h.p. g is
$$\left(1 - \sqrt{\rho'}\right)$$
-far from CRS[|L*|, m, ρ' , \hat{w}_i, σ_i]

Domain shifting $f: L \to \mathbb{F}$ Claim on $f:(\hat{w},\sigma)$

f and g claimed to be evaluations of same polynomial. Want to output **claims** on g. **Goal:** If *f* is $(1 - \sqrt{\rho})$ -far from CRS[|*L*|, *m*, ρ , \hat{w} , σ] least one $i \in [\ell]$

Assume there is unique polynomial \hat{p} that is $\left(1 - \sqrt{\rho'}\right)$ -close to g.

Then, if \hat{p} satisfies the (\hat{w}, σ) -constraint f must be be $\left(1 - \sqrt{\rho}\right)$ -far from it.

Output claims on g: $(\hat{w}_1, \sigma_1), \ldots, (\hat{w}_\ell, \sigma_\ell)$

|, w.h.p. g is
$$\left(1 - \sqrt{\rho'}\right)$$
-far from CRS[|L*|, $m, \rho', \hat{w}_i, \sigma_i$]

Claim on $f:(\hat{w},\sigma)$

f and *g* claimed to be evaluations of same polynomial. Want to output **claims** on *g*. **Goal:** If f is $\left(1 - \sqrt{\rho}\right)$ -far from CRS[$|L|, m, \rho, \hat{w}, \sigma$], w.h.p. *g* is $\left(1 - \sqrt{\rho'}\right)$ -far form the least one $i \in [\ell]$

Assume there is unique polynomial \hat{p} that is $\left(1 - \sqrt{\rho'}\right)$ -close to g.

Then, if \hat{p} satisfies the (\hat{w}, σ) -constraint f must be be $\left(1 - \sqrt{\rho}\right)$ -far from it.

Output claims on *g*: $(\hat{w}_1, \sigma_1), \dots, (\hat{w}_{\ell}, \sigma_{\ell})$

|, w.h.p. g is
$$\left(1 - \sqrt{\rho'}\right)$$
-far from CRS[|L*|, $m, \rho', \hat{w}_i, \sigma_i$]

Claim on $f:(\hat{w},\sigma)$

f and g claimed to be evaluations of same polynomial. Want to output claims on g. **Goal:** If *f* is $(1 - \sqrt{\rho})$ -far from CRS[|*L*|, *m*, ρ , \hat{w} , σ] least one $i \in [\ell]$

Assume there is unique polynomial \hat{p} that is $\left(1 - \sqrt{\rho'}\right)$ -close to g. Then, if \hat{p} satisfies the (\hat{w}, σ) -constraint f must be be $\left(1 - \sqrt{\rho}\right)$ -far from it. **New constraints:** (i) original constraint (\hat{w}, σ) (ii) $\hat{p}(z) = y$ for some random point z.

Output claims on *g*: $(\hat{w}_1, \sigma_1), \ldots, (\hat{w}_\ell, \sigma_\ell)$

|, w.h.p. g is
$$\left(1 - \sqrt{\rho'}\right)$$
-far from CRS[|L*|, $m, \rho', \hat{w}_i, \sigma_i$]

Claim on $f:(\hat{w},\sigma)$

f and g claimed to be evaluations of same polynomial. Want to output claims on g. **Goal:** If *f* is $(1 - \sqrt{\rho})$ -far from CRS[|*L*|, *m*, ρ , \hat{w} , σ] least one $i \in [\ell]$

Assume there is unique polynomial \hat{p} that is $\left(1 - \sqrt{\rho'}\right)$ -close to g. Then, if \hat{p} satisfies the (\hat{w}, σ) -constraint f must be be $\left(1 - \sqrt{\rho}\right)$ -far from it. **New constraints:** (i) original constraint (\hat{w}, σ) (ii) $\hat{p}(z) = y$ for some random point z. So, except with probability $\sqrt{\rho}$, g is $\left(1 - \sqrt{\rho'}\right)$ -far from CRS[$|L^*|, m, \rho', (\hat{w}_1, \sigma_1), \dots, (\hat{w}_{\ell}, \sigma_{\ell})$]. Can amplify to $\sqrt{\rho}^t$

Output claims on *g*: $(\hat{w}_1, \sigma_1), \ldots, (\hat{w}_\ell, \sigma_\ell)$

|, w.h.p. g is
$$\left(1 - \sqrt{\rho'}\right)$$
-far from CRS[|L*|, $m, \rho', \hat{w}_i, \sigma_i$]

 $\Lambda(\mathscr{C}, g, \delta^*)$ 8 δ^* *****************

- By fundamental theorem of algebra of w.h.p. no pair \hat{u}, \hat{v} with $\hat{u}(r) = \hat{v}(r)$
- Prover "chooses" which codeword \hat{u} it "commits" to

- By fundamental theorem of algebra of w.h.p. no pair \hat{u}, \hat{v} with $\hat{u}(r) = \hat{v}(r)$
- Prover "chooses" which codeword \hat{u} it "commits" to

Out Of Domain Subprotocol to force unique

- By fundamental theorem of algebra of w.h.p. no pair \hat{u}, \hat{v} with $\hat{u}(r) = \hat{v}(r)$
- Prover "chooses" which codeword \hat{u} it "commits" to

Add to list of constraints to enforce!

Sumcheck claims on g: $(\hat{w}_1, \sigma_1), \dots, (\hat{w}_{\ell}, \sigma_{\ell})$

Sumcheck claims on g: $(\hat{w}_1, \sigma_1), \dots, (\hat{w}_{\ell}, \sigma_{\ell})$

Batching

Sumcheck claims on g: $(\hat{w}_1, \sigma_1), \dots, (\hat{w}_{\ell}, \sigma_{\ell})$

Batching

Sumcheck claim on $g:(\hat{w}^*, \sigma^*)$

Many ways this can be done: we chose random linear combination.

Verifier can ask sumcheck queries

i.e. send \hat{w} and receive $\sum \hat{w}(\hat{f}(\mathbf{b}), \mathbf{b})$ b

Verifier can ask sumcheck queries

i.e. send \hat{w} and receive $\sum \hat{w}(\hat{f}(\mathbf{b}), \mathbf{b})$ b

Verifier can ask sumcheck queries

i.e. send \hat{w} and receive $\sum \hat{w}(\hat{f}(\mathbf{b}), \mathbf{b})$ b

Verifier can ask sumcheck queries

i.e. send \hat{w} and receive $\sum \hat{w}(\hat{f}(\mathbf{b}), \mathbf{b})$ b

Verifier can ask sumcheck queries

i.e. send \hat{w} and receive $\sum \hat{w}(\hat{f}(\mathbf{b}), \mathbf{b})$ b

Verifier can ask sumcheck queries

i.e. send \hat{w} and receive $\sum \hat{w}(\hat{f}(\mathbf{b}), \mathbf{b})$ b

Verifier can ask sumcheck queries

i.e. send \hat{w} and receive $\sum \hat{w}(\hat{f}(\mathbf{b}), \mathbf{b})$ b

Verifier can ask sumcheck queries

i.e. send \hat{w} and receive $\sum \hat{w}(\hat{f}(\mathbf{b}), \mathbf{b})$ b

Verifier can ask sumcheck queries

i.e. send \hat{w} and receive $\sum \hat{w}(\hat{f}(\mathbf{b}), \mathbf{b})$ b

Generalizes univariate and

Verifier can ask sumcheck queries

i.e. send \hat{w} and receive $\sum \hat{w}(\hat{f}(\mathbf{b}), \mathbf{b})$ b

Generalizes univariate and

Verifier can ask **sumcheck queries**

i.e. send \hat{w} and receive $\sum \hat{w}(\hat{f}(\mathbf{b}), \mathbf{b})$ b

Generalizes univariate and

Verifier can ask **sumcheck queries**

i.e. send \hat{w} and receive $\sum \hat{w}(\hat{f}(\mathbf{b}), \mathbf{b})$ b

Generalizes univariate and

efficient arithmetizations?

V

P

 $\alpha \leftarrow \mathbb{F}$

 $\alpha \leftarrow \mathbb{F}$

Review: FRI iteration $f: L \to \mathbb{F}$

 $\alpha \leftarrow \mathbb{F}$

Claimed to be

same polynomial

f'

Recurse on
$$f' \in \mathsf{RS} \left[\frac{n}{2^k}, m-k, \rho \right]$$

$\alpha \leftarrow \mathbb{F}$

Disclaimer: in full FRI consistency checks are correlated between rounds.

$\alpha \leftarrow \mathbb{F}$

Disclaimer: in full FRI consistency checks are correlated between rounds.

Soundness:

Suppose that $f' \in \mathsf{RS}[n/2^k, m - k, \rho]$.

If *f* is δ -far from RS[*n*, *m*, ρ],

Fold(f, α) must be δ -far from $\mathsf{RS}[n/2^k, m-k, \rho]$

Disclaimer: in full FRI consistency checks are correlated between rounds.

Soundness:

Suppose that $f' \in \mathsf{RS}[n/2^k, m - k, \rho]$.

If *f* is δ -far from RS[*n*, *m*, ρ],

Fold(f, α) must be δ -far from $\mathsf{RS}[n/2^k, m-k, \rho]$

Then, f' and Fold (f, α) differ on a δ -fraction.

Soundness error is $(1 - \delta)^t$

Disclaimer: in full FRI consistency checks are correlated between rounds.

Soundness:

Suppose that $f' \in \mathsf{RS}[n/2^k, m - k, \rho]$.

If *f* is δ -far from RS[*n*, *m*, ρ],

Fold(f, α) must be δ -far from $\mathsf{RS}[n/2^k, m-k, \rho]$

Then, f' and Fold (f, α) differ on a δ -fraction.

Soundness error is $(1 - \delta)^t$

To get soundness error $\varepsilon_{\text{RBR}} \leq 2^{-\lambda}$: set $\delta := 1 - \sqrt{\rho}$ and $t := -\frac{1}{10}$ $-\log \sqrt{\rho}$

$$\alpha \leftarrow \mathbb{F}$$

