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In this talk, we focus on the IOP!
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Comparison with prior work

Queries Verifier Time Alphabet

BaseFold

FRI

STIR

WHIR

q𝖡𝖥 = O(λ ⋅ m)

q𝖥𝖱𝖨 = O ( λ
k

⋅ m)
q𝖲𝖳𝖨𝖱 = O ( λ

k
⋅ log m)

q𝖶𝖧𝖨𝖱 = O ( λ
k

⋅ log m)

O(q𝖡𝖥)

O(q𝖥𝖱𝖨 ⋅ 2k)

O(q𝖲𝖳𝖨𝖱 ⋅ 2k+λ2 ⋅ 2k)

O(q𝖶𝖧𝖨𝖱 ⋅ (2k + m))

𝔽2

𝔽2k

𝔽2k

𝔽2k
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Implementation
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• Huge thanks to Remco Bloemen!!!
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Super fast verifier
• The WHIR verifier typically runs in a few hundred microseconds.


• Other verifiers require several milliseconds (and more).


• Without compromising prover time & argument size


• As a PCS for degree :224

16

Schemes with trusted 
setup using pairings!
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Remark: BaseFold 
implementation is not 

fully optimised
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Summary

WHIR 🌪: a new IOPP for CRS codes.

Query complexity: 

 

Verifier complexity: 

O ( λ
k

⋅ log m)

O(q𝖶𝖧𝖨𝖱 ⋅ (2k + m))

• State-of-the-art argument size and hash complexity

• Fastest verification of any PCS (including trusted setups!)

• Enables high-soundness compilation for Σ-IOP 

Σ-IOP CRS IOPP 
(WHIR 🌪) IOP+ =
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ĥ
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ĥ
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ĥi

gClaimed to be 
same polynomial

 is over a domain of 
size 

g
n
2

≥
n
2k

Makes  queries to t f
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f (1 − ρ) 𝖢𝖱𝖲[ |L | , m, ρ, ŵ, σ] g (1 − ρ′ ) 𝖢𝖱𝖲[ |L* | , m, ρ′ , ŵi, σi]
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New constraints: (i) original constraint  (ii)  for some random point . (ŵ, σ) ̂p(z) = y z
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g : L → 𝔽 Sumcheck claims on :g
(ŵ1, σ1), …, (ŵℓ, σℓ)

Batching

g : L → 𝔽
Sumcheck claim on : g (ŵ*, σ*)

Many ways this can be done: we chose random linear combination.
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Q: Can we use this to do more 
efficient arithmetizations?
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Soundness error is 

f′ 𝖥𝗈𝗅𝖽( f, α)
δ

(1 − δ)t

Suppose that . 


If  is -far from ,


 must be -far from 

f′ ∈ 𝖱𝖲[n/2k, m − k, ρ]

f δ 𝖱𝖲[n, m, ρ]

𝖥𝗈𝗅𝖽( f, α) δ
𝖱𝖲[n/2k, m − k, ρ]

Soundness:

To get soundness error : 

set  and 

ε𝖱𝖡𝖱 ≤ 2−λ

δ := 1 − ρ t :=
λ

−log ρ


