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e \Want to show “knOW|edge” of w s.t. (x, W) c R e.g. R := {(x,w) : SHA3(w) = x}

* Need* to add a random oracle.

f
* Can be based on many
computational assumptions.
 Today: we limit ourselves to
pure ROM SNARKSs P T

e Wil call these hash-based
SNARKS.
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In practice _

Instantiating random oracle gives amazing SNARKS: oo | (cem|

* Transparent setup (choice of hash) - " ( | /
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* Highly efficient implementations (no public-key crypto)
* Plausibly post-quantum secure (secure in QROM)

Used to secure billions of dollars in real-world blockchains:
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What we are running: What we really want to show:

Reed-Solomon Proximity Test on virtual function: | have a polynomial f and a commitment to (an

Jx) —y

encoding of it) f such that

(x) := A
T f@) =y

X —Z

Break it down as:

Test for constrained encoding We are designing a proximity
test just to check this
Jx) =y Reed —Solomon constraint.

Quotient f'(x) :=

X —7z proximity test for f’ _
Can we move the constraint

directly into the IOPP?
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Constrained RS codes

RS|n, m, p] :

{ Evaluations of univariate }
feF?[X]onL

Evaluations of multilinear

f e L-Sl[Xl, ....X ]onL
Constraint Value of
constraint

CRS[1. m. p. . 0] 1= { Evaluations of multiinear S e = o }

fersx, ...,X,lonL = .o

If w = Z - eq(X, r) we recover
multilinear polynomial evaluation




Our results




k > 1 is a folding

parameter

WHIR ‘!

A constrained Reed-Solomon proximity test

11



k > 1 is a folding

WHIR \5 parameter

A constrained Reed-Solomon proximity test

11



k > 1 is a folding

WHIR \’ parameter

A constrained Reed-Solomon proximity test

11



k > 1 is a folding

WHIR \’ parameter

A constrained Reed-Solomon proximity test

11



k > 1 is a folding

WHIR \’ parameter

A constrained Reed-Solomon proximity test

11



Comparison with prior work

Queries Verifier Time Alphabet
BaseFold qer = O - m) 0(@q..) F
A k
i s = O (Z | m) OG- 2 F
A ky 12 0k Ok
STIR g = O P logm OG- 2°+A7 - 27) F
A ' .
WHIR Qe = O (; - logm O(G e * (2% + m)) F>
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* Drop-in replacement of FRI and STIR (when used for CRS|[F, m, p,0,0])

« Same benefits as STIR over FRI, and similar prover time.

 Additionally, richer proximity tests means that:
e Can be used as a multilinear PCS (instead of BaseFold, FRI-Binius, etc)
e Can be used in compiler for 2-I0OP (extra slides)

* Further, super-fast verification (next)
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whir (pcs) 9§
Field: Goldilocks2 and MT: Blake3
Number of variables: 20, folding

Security level: 100 bits using ConjecturelList security and

initial_folding_pow_bits: @

Num_queries: 41, rate: 2"-2, pow_
Num_queries: 17, rate: 2"-5, pow_
Num_queries: 11, rate: 2"-8, pow_
Num_queries: 8, rate: 2"-11, pow_

final_queries: 6, final_rate: 2"-

00D commitment

00D sample

00D sample

qguery error: 85.0,
(x4) prox gaps: 99.
00D sample
guery error: 88.
(x4) prox gaps:
00D sample
guery error: 88.
(x4) prox gaps:
guery error: 84.

0000000000000 O

Prover time: 356.9ms
Proof size: 58.7 KiB
Verifier time: 342.8ps
Average hashes: 1.1k

factor: 4

bits: 18, ood_samples:
bits: 15, ood_samples:
bits: 12, ood_samples:
bits: 12, ood_samples:

query error: 82.0, combination:
(x4) prox gaps: 101.0, sumcheck:

combination:
@, sumcheck:

combination:
.0, sumcheck:

combination:
.0, sumcheck:

pow: 16.0

94.6, pow:

folding_pow:
folding_pow:
, folding_pow:
, folding_pow:
14, final_pow_bits: 16, final_folding_pow_bits: @

(x4) prox gaps: 103.0, sumcheck: 102.0, pow: 0.0

18.0

100.0, pow: 0.0

pow:
pow:

pow:
pow:

pow:
pow:

15.0
2.0

12.0
4.0

19 bits of PoW
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00D commitment

(x4) prox gaps: 103.0, sumcheck: 102.0, pow: 0.0
00D sample

qguery error: 82.0, combination: 94.6, pow: 18.0
(x4) prox gaps: 101.0, sumcheck: 100.0, pow: 0.0
00D sample

query error: 85.08, combination: . pow: 15.0
(x4) prox gaps: 99.0, sumcheck: .0, pow: 2.0
00D sample

query error: 88.0, combination: .3, pow: 12.0
(x4) prox gaps: .0, sumcheck: .0, pow: 4.0
00D sample

qguery error: 88. combination: . pow:

(x4) prox gaps: .0, sumcheck: .0, pow:

guery error: 84. pow: 16.0

.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0

Prover time: 356.9ms
Proof size: 58.7 KiB
Verifier time: 342.8ps
Average hashes: 1.1k
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Implementation

» Rust & implementation, available at WizardOfMenlo/whir

 Arkworks as backend, (extension of) Goldilocks for benchmarks

whir (pcs) 9§

Field: Goldilocks2 and MT: Blake3

Number of variables: 2@, folding factor: 4

Security level: 100 bits using ConjecturelList security and 19 bits of PoW
initial_folding_pow_bits: @

Num_queries: 41, rate: 2"-2, pow_bits: 18, ood_samples: folding_pow:
Num_queries: 17, rate: 2”-5, pow_bits: 15, ood_samples: folding_pow:
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* Without compromising prover time & argument size

 As a PCS for degree 222100 bits of security:

Prover time: ~1s (MacBook Air)
Commit & open: 63 KiB
I

Verifier time: 270 ps (0.27 ms)




Super fast verifier

 The WHIR verifier typically runs in a few hundred microseconds.
* Other verifiers require several milliseconds (and more).

o Without compromising prover time & argument size

e As a PCS for degree 224: Schemes with trusted
setup using pairings!

Verifier time (ms) | Brakedown | Ligero | Greyhound | Hyrax | PST | KZG | WHIR-1/2 | WHIR-1/16

A =100 3000 733 - 100 7.81 | 2.42 0.61 0.29
A =128 3680 750 130 151 9.92 | 3.66 1.4 0.6

Table 4: Comparison of WHIR-CB'’s verifier time versus other polynomial commitment schemes, on
24 variables. For the KZG degree 2?4 is used instead.
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Comparison with BaseFold

Argument size Verifier time

25 -

8000 - .

M n 20 -

"~ 6000 - S

< 15 -

@ 4000 - £ 10 -

@ 2000 - =

0 __h%— 0 - i | |
218 22() 222 224 226 218 22() 222 224 226
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Prover time

BaseFold: x 2
2% 1 Remark: BaseFold

WHIR-UD: A 5 2~ 1 - implementation is not
fully optimised
WHIR-CB: A T P

Degree
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Comparison with FRI (and STIR)

128-bits security level.

A = 106 + 22 bits of PoW + “list-decoding” assumptions.

m=24,p=1/4 FRI WHIR
Size (KiB) 177 106
Verifier time 2.4ms /00ps
d=30,p=1/2 FRI WHIR
Size (KiB) 494 187
Verifier time 4.4ms 1.3ms

Argument size

1 | | 1 1 | |
218 220 222 224 226 228 230

Degree

Prover time

1 1 1 1 1 1
218 220 222 224 226 228 230

Degree

18

= 1/2

Verifier hash complexity

10000 -
8000 -
6000 -

4000 -

2000 - MKH

T I I | 1 T I
218 220 222 224 226 228 230

Hashes

Degree

Verifier time

1 1 1 1 1 1
218 220 222 224 226 228 230

Figure 2: Comparison of FRI, STIR and WHIR for p = 1/2. FRI: x, STIR: e, WHIR-CB: A. Pro
time is displayed with logarithmic scaling.
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Query complexity:

0/11
— - logm
r g

Verifier complexity:

O(QWHIR ) (2k + m))

» State-of-the-art argument size and hash complexity

» Fastest verification of any PCS (including trusted setups!)
* Enables high-soundness compilation for Z-10P

.+
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FRI & STIR Folding

Reduce RS|[#n, m, p] to RS|n/ 2K m —k, i]
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How? Inspiration from FFTs, for k = 1:
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Can extend to every k that is a power of two.
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Properties:

Local: compute Fold(f, @)(z) at any
point z € L* with 2% queries to f

Distance preservation: if f is o-far from
RS[n, m, p], then w.h.p. Fold(f, &) remains
also o-far from RS[n/2%, m — k, p]
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Proximity Gaps for Reed—Solomon Codes
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Mutual correlated agreement

Test a random linear combination

r « "

J* = Z’”ifi

24

if w.h.p. A(f*,6) < o:
Agreement: then A(f,, €¢) < o.

Correlated agreement: then f;, ..., /..
agree with € on the same “stripe”

Mutual correlated agreement: the stripe
in which fi, ..., f,, agree with & is the
same on which f* does:

“No new correlated domains appear”



List-RLC lemma and List-Fold A(%.1.6) is the lst o

codewords of & that are o-close

Implied by mutual correlated agreement to f

25



List-RLC lemma and List-Fold A(%.1.6) is the lst o

codewords of & that are o-close

Implied by mutual correlated agreement to f

fiseeesfys L= F
@

25



List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of € that are o-close
Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

25



List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of € that are o-close
Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

25



List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of & that are o-close

Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

A(E, - ,0)

25



List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of & that are o-close

Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

A(E, - ,0)

25



List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of & that are o-close

Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

]ﬂ,...,fm:L—)J_ A(%m,,é)

A(E, - ,0)

25



List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of & that are o-close

Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

]ﬂ,...,fm:L—)J_ A(%m,,é)

A(E, - ,0)

25



List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of € that are o-close
Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

]ﬂ,...,fm:L—)J_ A(%m,,é)

A(E, - ,0)

25



List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of € that are o-close
Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

forsdui L= F pgm . g

 Random linear combination version: w.h.p. over r:

A@B, (f,r),5) = {(ur):ue AE"15)}

A(E, - ,0)

25



List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of € that are o-close
Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

]ﬂ,...,fm:L—l'J_ A(%m,,é)

®  Random linear combination version: w.h.p. over r:

A@B, (f,r),5) = {(ur):ue AE"15)}

(-,r) (-,r) l * Folding version: w.h.p. over a:
A(8, Fold(f, @), §) = {Fold(u, ) : u € A(%,f,6)}

A(E, - ,0)

25



List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of & that are o-close

Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

forsdui L= F pgm . g

 Random linear combination version: w.h.p. over r:

7 (B, (£.1),8) = {(u,r) : u € A(G".1,5))
< , I‘) < . l‘) l  Folding version: w.h.p. over Q:
| A(E, Fold(f, ), 5) = {Fold(u, ) : u € A(G,f,5)}
® * Alternatively, each term in the |.h.s can be “explained"

A(E, - ,0) by terms in the r.h.s.

25



List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of & that are o-close

Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

forshi L= F A, g

 Random linear combination version: w.h.p. over r:

7 (B, (£.1),8) = {(u,r) : u € A(G".1,5))
< , I‘) < . l‘) l  Folding version: w.h.p. over Q:
| A(E, Fold(f, ), 5) = {Fold(u, ) : u € A(G,f,5)}
® * Alternatively, each term in the |.h.s can be “explained"

A(E, - ,0) by terms in the r.h.s.

* We show correlated agreement implies mutual
correlated agreement in unique decoding.

25



List-RLC lemma and List-Fold A(%.1.6) is the lst o

codewords of & that are o-close

Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

fi,...,fm: LH J_ A(%m9.95)

 Random linear combination version: w.h.p. over r:

7 (B, (£.1),8) = {(u,r) : u € A(G".1,5))
< , I‘) < . l‘) l  Folding version: w.h.p. over a:
’ A(E, Fold(f, @), 8) = {Fold(u, @) : u € A(%,f,5)}
® * Alternatively, each term in the I.h.s can be “explained”

A(G, - ,0) by terms in the r.h.s.

* We show correlated agreement implies mutual
Stronger than what is required correlated agreement in unique decoding.
for STIR’s soundness

25



List-RLC lemma and List-Fold A(%.1.6) is the lst o
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Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

fi,...,fm: LH J_ A(%m9.95)

 Random linear combination version: w.h.p. over r:

7 (B, (£.1),8) = {(u,r) : u € A(G".1,5))
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® * Alternatively, each term in the I.h.s can be “explained”

A(G, - ,0) by terms in the r.h.s.

* We show correlated agreement implies mutual
Stronger than what is required correlated agreement in unique decoding.

for STIR’s soundness
Recent results show it holds up to 1.5 Johnson for

25 general linear codes!
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Completeness: Z w(f(b),b) = o then: . Wi Fold(f, o)
b

« h(0)+ h(l) = o,
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Output claims on g:
(‘;‘\/19 61)9 IO (‘;‘\/fa Gf)



Domain shifting

Claim on f: (W, o) [TTTTTTT]1 [TTT T 1T 1] Output claims on g:

(‘;‘\/19 61)9 IO (‘;‘\/fa Gf)

f and g claimed to be evaluations of same polynomial. Want to output claims on g.

Goal: If fis (1 — \/ﬁ)-far from CRS[|L|, m, p,w, 6], w.h.p. g is (1 — ﬁ)-far from CRS[ | L* |, m, p’, W,, 5;] for at
least one i € [}
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Domain shifting

f:L—-TF g.L* — |
Claim on f: (W, ) BUEBEEE B DE]:.:.] OAutput clalms: on g:
¢ Wi,61) ..., (Wp, 0,)

<

f and g claimed to be evaluations of same polynomial. Want to output claims on g.

Goal: If fis (1 — \/ﬁ)-far from CRS[|L|, m, p,w, 6], w.h.p. g is (1 — \/;’>-far from CRS[ | L* |, m, p’, W,, 5;] for at
least one i € [}

Assume there is unique polynomial p that is (1 — \/;’ )—close to g. 00D subprotocol (next)

Then, if p satisfies the (W, o)-constraint f must be be (1 — \/,5 )—far from it.

: Just an evaluation constraint which we
New constraints: (i) original constraint (w, o) (i) p(z) = y for some random point z. know how to handle!

So, except with probability \/,5 g is (1 — \/;’)—far from CRS[|L* |, m, p’, Wy, 067), ..., (W,, 0,)].

Can amplify to \/,Bt 28
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Out Of Domain

Subprotocol to force unique v Johnson bound, this ®
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@
@
@

29



A(E, g, 0%*)

—

Out Of Domain

Subprotocol to force unique v Johnson bound, this ®
W
g L* ~ [F JETTTT T LT
«F
. “‘
Per ] g Lo

29



AN(G, g, 0*)

—
By Johnson bound, this
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Subprotocol to force unique
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* By fundamental theorem of algebra of w.h.p. ®
no pair i, V with i(r) = V(r) o

 Prover "chooses" which codeword ii it
"commits" to
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Out Of Domain

Subprotocol to force unique

QRSN

J_

4—

pelF

—_—

* By fundamental theorem of algebra of w.h.p.

no pair i, v with 7(r) = v(r)

 Prover "chooses" which codeword ii it
"commits" to

Add to list of constraints to enforce!
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Pick your favourite sumcheck batching

30



Batching

Pick your favourite sumcheck batching

g:L—-T Sumcheck claims on g:

[TTTTITTITTTITT  (vpops ... Obpop)

30



Batching

Pick your favourite sumcheck batching

g:L—-T Sumcheck claims on g:

[TTTTTTTTTITT]  (pop)s..s (g 0p)

Batching

30



Batching

Pick your favourite sumcheck batching

g:L—-T Sumcheck claims on g:

[LIITTTTTTITTT (o), (g 0p)

Batching

g.L—-TF
[IIIIIIITITI]  sumcheck claimon g: (W¥, o¥)

30



Batching

Pick your favourite sumcheck batching

g:L—-T Sumcheck claims on g:

[LIITTTTTTITTT (o), (g 0p)

Batching

g.L—-TF
[IIIIIIITITI]  sumcheck claimon g: (W¥, o¥)

Many ways this can be done: we chose random linear combination.
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WHIR

Domain shift
—_—,
 —

Batching

n
Recurse g € CRS 5’ m — Kk,
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High soundness compilation using constrained codes
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P
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=
q
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Verifier can ask sumcheck queries

.e. send w and receive Z w( f(b), b)
b
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Application: 2-10P _

High soundness compilation using constrained codes Q: Can we use this to do more
efficient arithmetizations?
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Review: FRI iteration

Soundness:

FiL—>F Suppose that ' € RS[n/2%, m — k, p].

D]]:l:l:l:l If fis o-far from RS[n, m, p],

Fold( f, @) must be o-far from
RS[n/2%, m — k, p]

Then, f" and Fold(f, a) differ on

Check that a O-fraction.

Fold(f, @)(z) = f'(z) at

Claimed to b .
St tpoints in sz Soundness error is (1 — 5)t

; /
same polynomial f

n
Recurse on f € RS ?’m — k, p]

To get soundness error ¢, < 27

_ | set§:=1—,/pandt:=
Disclaimer: in full FRI —log\/ﬁ

consistency checks are
correlated between rounds.
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