
WHIR 🌪
Proximity testing for Reed–Solomon+

1

Giacomo FenziGal Arnon

Alessandro Chiesa Eylon Yogev



Motivation



SNARKs
Succinct Non-interactive Arguments of Knowledge

3



SNARKs
Succinct Non-interactive Arguments of Knowledge

• Want to show “knowledge” of  s.t. w (x, w) ∈ R

3



SNARKs
Succinct Non-interactive Arguments of Knowledge

• Want to show “knowledge” of  s.t. w (x, w) ∈ R e.g. R := {(x, w) : 𝖲𝖧𝖠𝟥(w) = x}

3



SNARKs
Succinct Non-interactive Arguments of Knowledge

• Want to show “knowledge” of  s.t. w (x, w) ∈ R e.g. R := {(x, w) : 𝖲𝖧𝖠𝟥(w) = x}

P V

(x, w) ∈ R

x

3



SNARKs
Succinct Non-interactive Arguments of Knowledge

• Want to show “knowledge” of  s.t. w (x, w) ∈ R e.g. R := {(x, w) : 𝖲𝖧𝖠𝟥(w) = x}

πP V

(x, w) ∈ R

x

3



SNARKs
Succinct Non-interactive Arguments of Knowledge

• Want to show “knowledge” of  s.t. w (x, w) ∈ R e.g. R := {(x, w) : 𝖲𝖧𝖠𝟥(w) = x}

π
0/1

P V

(x, w) ∈ R

x

3



SNARKs
Succinct Non-interactive Arguments of Knowledge

• Want to show “knowledge” of  s.t. w (x, w) ∈ R

• Need* to add a random oracle.

e.g. R := {(x, w) : 𝖲𝖧𝖠𝟥(w) = x}

π
0/1

P V

(x, w) ∈ R

x

f

3



SNARKs
Succinct Non-interactive Arguments of Knowledge

• Want to show “knowledge” of  s.t. w (x, w) ∈ R

• Need* to add a random oracle.

e.g. R := {(x, w) : 𝖲𝖧𝖠𝟥(w) = x}

π
0/1

P V

(x, w) ∈ R

x

f

• Can be based on many 
computational assumptions.

3



SNARKs
Succinct Non-interactive Arguments of Knowledge

• Want to show “knowledge” of  s.t. w (x, w) ∈ R

• Need* to add a random oracle.

e.g. R := {(x, w) : 𝖲𝖧𝖠𝟥(w) = x}

π
0/1

P V

(x, w) ∈ R

x

f

• Can be based on many 
computational assumptions.

• Today: we limit ourselves to 
pure ROM SNARKs

3



SNARKs
Succinct Non-interactive Arguments of Knowledge

• Want to show “knowledge” of  s.t. w (x, w) ∈ R

• Need* to add a random oracle.

e.g. R := {(x, w) : 𝖲𝖧𝖠𝟥(w) = x}

π
0/1

P V

(x, w) ∈ R

x

f

• Can be based on many 
computational assumptions.

• Today: we limit ourselves to 
pure ROM SNARKs

• Will call these hash-based 
SNARKs.

3



Hash-based SNARKs
In practice

4



Hash-based SNARKs
In practice
Instantiating random oracle gives amazing SNARKs:

4



Hash-based SNARKs
In practice
Instantiating random oracle gives amazing SNARKs:

• Transparent setup (choice of hash)

4



Hash-based SNARKs
In practice
Instantiating random oracle gives amazing SNARKs:

• Transparent setup (choice of hash)

• Highly efficient implementations (no public-key crypto)

4



Hash-based SNARKs
In practice
Instantiating random oracle gives amazing SNARKs:

• Transparent setup (choice of hash)

• Highly efficient implementations (no public-key crypto)

• Plausibly post-quantum secure (secure in QROM)

4



Hash-based SNARKs
In practice
Instantiating random oracle gives amazing SNARKs:

• Transparent setup (choice of hash)

• Highly efficient implementations (no public-key crypto)

• Plausibly post-quantum secure (secure in QROM)

Used to secure billions of dollars in real-world blockchains:

4



Hash-based SNARKs
In practice
Instantiating random oracle gives amazing SNARKs:

• Transparent setup (choice of hash)

• Highly efficient implementations (no public-key crypto)

• Plausibly post-quantum secure (secure in QROM)

Used to secure billions of dollars in real-world blockchains:

4



Constructing SNARKs
[BCS16] Construction

5



Constructing SNARKs
[BCS16] Construction

IOP

5



Constructing SNARKs
[BCS16] Construction

P V

IOP

5



Constructing SNARKs
[BCS16] Construction

P V

IOP

5



Constructing SNARKs
[BCS16] Construction

P V

IOP

5



Constructing SNARKs
[BCS16] Construction

P V

IOP

5



Constructing SNARKs
[BCS16] Construction

P V

IOP

5



Constructing SNARKs
[BCS16] Construction

P V

IOP

5



Constructing SNARKs
[BCS16] Construction

P V

IOP

5



Constructing SNARKs
[BCS16] Construction

P V

IOP

5



Constructing SNARKs
[BCS16] Construction

P V

IOP

5



Constructing SNARKs
[BCS16] Construction

P V

IOP

5



Constructing SNARKs
[BCS16] Construction

P V

IOP

BCS

5



Constructing SNARKs
[BCS16] Construction

P V

IOP

BCS

P Vπ
0/1

(x, w) ∈ R

x

f

STARK

5



Constructing SNARKs
[BCS16] Construction

P V

IOP

BCS

P Vπ
0/1

(x, w) ∈ R

x

f

STARK

Proof length 


Queries 

𝗅 ≈ O(n)

𝗊 ≈ O(log n)
5



Constructing SNARKs
[BCS16] Construction

P V

IOP

BCS

P Vπ
0/1

(x, w) ∈ R

x

f

STARK

Proof length 


Queries 

𝗅 ≈ O(n)

𝗊 ≈ O(log n)

Large, think 224

Small, think ~400

5



Constructing SNARKs
[BCS16] Construction

P V

IOP

BCS

P Vπ
0/1

(x, w) ∈ R

x

f

STARK

Proof length 


Queries 

𝗅 ≈ O(n)

𝗊 ≈ O(log n)
Argument size O(λ ⋅ 𝗊 ⋅ log 𝗅)

Large, think 224

Small, think ~400

5



Constructing SNARKs
[BCS16] Construction

P V

IOP

BCS

P Vπ
0/1

(x, w) ∈ R

x

f

STARK

Proof length 


Queries 

𝗅 ≈ O(n)

𝗊 ≈ O(log n)
Argument size O(λ ⋅ 𝗊 ⋅ log 𝗅)

Large, think 224

Small, think ~400

5

Small, tens of KiB



Constructing SNARKs
[BCS16] Construction

P V

IOP

BCS

P Vπ
0/1

(x, w) ∈ R

x

f

STARK

Proof length 


Queries 

𝗅 ≈ O(n)

𝗊 ≈ O(log n)
Argument size O(λ ⋅ 𝗊 ⋅ log 𝗅)

Large, think 224

Small, think ~400

In this talk, we focus on the IOP!

5

Small, tens of KiB



Constructing IOPs
Traditionally

6



Constructing IOPs
Traditionally

PIOP

6



Constructing IOPs
Traditionally

PIOP

Just like IOPs, but prover is forced 
to send polynomials .


E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

6



Constructing IOPs
Traditionally

𝖯𝖯𝖨𝖮𝖯 𝖵𝖯𝖨𝖮𝖯

PIOP

Just like IOPs, but prover is forced 
to send polynomials .


E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

6



̂p

Constructing IOPs
Traditionally

𝖯𝖯𝖨𝖮𝖯 𝖵𝖯𝖨𝖮𝖯

PIOP

Just like IOPs, but prover is forced 
to send polynomials .


E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

6



̂q

̂p

Constructing IOPs
Traditionally

𝖯𝖯𝖨𝖮𝖯 𝖵𝖯𝖨𝖮𝖯

PIOP

Just like IOPs, but prover is forced 
to send polynomials .


E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

6



̂q

̂p

Constructing IOPs
Traditionally

𝖯𝖯𝖨𝖮𝖯 𝖵𝖯𝖨𝖮𝖯

PIOP

Just like IOPs, but prover is forced 
to send polynomials .


E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

6



̂q

̂p

Constructing IOPs
Traditionally

𝖯𝖯𝖨𝖮𝖯 𝖵𝖯𝖨𝖮𝖯

PIOP

Just like IOPs, but prover is forced 
to send polynomials .


E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

6



̂q

̂p

Constructing IOPs
Traditionally

𝖯𝖯𝖨𝖮𝖯 𝖵𝖯𝖨𝖮𝖯

PIOP

Just like IOPs, but prover is forced 
to send polynomials .


E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

6



̂q

̂p

Constructing IOPs
Traditionally

𝖯𝖯𝖨𝖮𝖯 𝖵𝖯𝖨𝖮𝖯

PIOP

Just like IOPs, but prover is forced 
to send polynomials .


E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

Strategy: use Reed-Solomon codes as 
“redundant” encoding. Use a proximity 
test to check claims on encoded oracles.

6



̂q

̂p

Constructing IOPs
Traditionally

𝖯𝖯𝖨𝖮𝖯 𝖵𝖯𝖨𝖮𝖯

PIOP

Just like IOPs, but prover is forced 
to send polynomials .


E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

Strategy: use Reed-Solomon codes as 
“redundant” encoding. Use a proximity 
test to check claims on encoded oracles.

6



̂q

̂p

Constructing IOPs
Traditionally

𝖯𝖯𝖨𝖮𝖯 𝖵𝖯𝖨𝖮𝖯

PIOP

Just like IOPs, but prover is forced 
to send polynomials .


E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

P V

Strategy: use Reed-Solomon codes as 
“redundant” encoding. Use a proximity 
test to check claims on encoded oracles.

6



̂q

̂p

Constructing IOPs
Traditionally

𝖯𝖯𝖨𝖮𝖯 𝖵𝖯𝖨𝖮𝖯

PIOP

Just like IOPs, but prover is forced 
to send polynomials .


E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

𝖯𝖯𝖨𝖮𝖯

̂p

P V

Strategy: use Reed-Solomon codes as 
“redundant” encoding. Use a proximity 
test to check claims on encoded oracles.

6



̂q

̂p

Constructing IOPs
Traditionally

𝖯𝖯𝖨𝖮𝖯 𝖵𝖯𝖨𝖮𝖯

PIOP

Just like IOPs, but prover is forced 
to send polynomials .


E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

𝖯𝖯𝖨𝖮𝖯

̂p

P V
f : L → 𝔽

Strategy: use Reed-Solomon codes as 
“redundant” encoding. Use a proximity 
test to check claims on encoded oracles.

6



̂q

̂p

Constructing IOPs
Traditionally

𝖯𝖯𝖨𝖮𝖯 𝖵𝖯𝖨𝖮𝖯

PIOP

Just like IOPs, but prover is forced 
to send polynomials .


E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

𝖯𝖯𝖨𝖮𝖯

̂p

P V
f : L → 𝔽

𝖵𝖯𝖨𝖮𝖯z ∈ 𝔽

Strategy: use Reed-Solomon codes as 
“redundant” encoding. Use a proximity 
test to check claims on encoded oracles.

6



̂q

̂p

Constructing IOPs
Traditionally

𝖯𝖯𝖨𝖮𝖯 𝖵𝖯𝖨𝖮𝖯

PIOP

Just like IOPs, but prover is forced 
to send polynomials .


E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

𝖯𝖯𝖨𝖮𝖯

̂p

P V
f : L → 𝔽

𝖵𝖯𝖨𝖮𝖯z ∈ 𝔽
y ∈ 𝔽

Strategy: use Reed-Solomon codes as 
“redundant” encoding. Use a proximity 
test to check claims on encoded oracles.

6



̂q

̂p

Constructing IOPs
Traditionally

𝖯𝖯𝖨𝖮𝖯 𝖵𝖯𝖨𝖮𝖯

PIOP

Just like IOPs, but prover is forced 
to send polynomials .


E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

𝖯𝖯𝖨𝖮𝖯

̂p

P V
f : L → 𝔽

𝖵𝖯𝖨𝖮𝖯z ∈ 𝔽
y ∈ 𝔽

Reed-Solomon Proximity Test on virtual function: 

f′ (x) :=
f(x) − y

x − z

Strategy: use Reed-Solomon codes as 
“redundant” encoding. Use a proximity 
test to check claims on encoded oracles.

6



̂q

̂p

Constructing IOPs
Traditionally

𝖯𝖯𝖨𝖮𝖯 𝖵𝖯𝖨𝖮𝖯

PIOP

Just like IOPs, but prover is forced 
to send polynomials .


E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

𝖯𝖯𝖨𝖮𝖯

̂p

P V
f : L → 𝔽

𝖵𝖯𝖨𝖮𝖯z ∈ 𝔽
y ∈ 𝔽

Reed-Solomon Proximity Test on virtual function: 

f′ (x) :=
f(x) − y

x − z

Strategy: use Reed-Solomon codes as 
“redundant” encoding. Use a proximity 
test to check claims on encoded oracles.

 of argument size from 
proximity test!

> 80 %
6



IOP of Proximity to RS codes

7



IOP of Proximity to RS codes

𝖱𝖲[n, m, ρ] :=

7



IOP of Proximity to RS codes

𝖱𝖲[n, m, ρ] :=
Evaluations of polynomials of degree  

on a domain  of size . 

< 2m

L ⊆ 𝔽 n ρ :=
2m

n{ }

7

Convenience



IOP of Proximity to RS codes

𝖱𝖲[n, m, ρ] :=
Rate of the 

code

Evaluations of polynomials of degree  

on a domain  of size . 

< 2m

L ⊆ 𝔽 n ρ :=
2m

n{ }

7

Convenience



IOP of Proximity to RS codes

𝖱𝖲[n, m, ρ] :=
Rate of the 

code

Evaluations of polynomials of degree  

on a domain  of size . 

< 2m

L ⊆ 𝔽 n ρ :=
2m

n{ }
IOPP for RS

7

Convenience



IOP of Proximity to RS codes

𝖱𝖲[n, m, ρ] :=
Rate of the 

code

Evaluations of polynomials of degree  

on a domain  of size . 

< 2m

L ⊆ 𝔽 n ρ :=
2m

n{ }

P V

IOPP for RS

7

Convenience



IOP of Proximity to RS codes

𝖱𝖲[n, m, ρ] :=
Rate of the 

code

Evaluations of polynomials of degree  

on a domain  of size . 

< 2m

L ⊆ 𝔽 n ρ :=
2m

n{ }

P V

IOPP for RS

7

Convenience



IOP of Proximity to RS codes

𝖱𝖲[n, m, ρ] :=
Rate of the 

code

Evaluations of polynomials of degree  

on a domain  of size . 

< 2m

L ⊆ 𝔽 n ρ :=
2m

n{ }

P V

IOPP for RS
f : L → 𝔽

7

Convenience



IOP of Proximity to RS codes

𝖱𝖲[n, m, ρ] :=
Rate of the 

code

Evaluations of polynomials of degree  

on a domain  of size . 

< 2m

L ⊆ 𝔽 n ρ :=
2m

n{ }

P V

IOPP for RS • If ,  accepts.


• If  is -far from ,  
accepts w.p. 

f ∈ 𝖱𝖲[n, m, ρ] V

f δ 𝖱𝖲[n, m, ρ] V
ε𝖱𝖡𝖱 ≤ 2−λ

f : L → 𝔽

7

Convenience



IOP of Proximity to RS codes

𝖱𝖲[n, m, ρ] :=
Rate of the 

code

Evaluations of polynomials of degree  

on a domain  of size . 

< 2m

L ⊆ 𝔽 n ρ :=
2m

n{ }

P V

IOPP for RS • If ,  accepts.


• If  is -far from ,  
accepts w.p. 

f ∈ 𝖱𝖲[n, m, ρ] V

f δ 𝖱𝖲[n, m, ρ] V
ε𝖱𝖡𝖱 ≤ 2−λ

Goal: minimize queries to  and other 
proof oracles.

f

f : L → 𝔽

7

Convenience



IOP of Proximity to RS codes

𝖱𝖲[n, m, ρ] :=
Rate of the 

code

Evaluations of polynomials of degree  

on a domain  of size . 

< 2m

L ⊆ 𝔽 n ρ :=
2m

n{ }

P V

IOPP for RS • If ,  accepts.


• If  is -far from ,  
accepts w.p. 

f ∈ 𝖱𝖲[n, m, ρ] V

f δ 𝖱𝖲[n, m, ρ] V
ε𝖱𝖡𝖱 ≤ 2−λ

Round by 
round, 

required by 
BCS 

transform. 

Goal: minimize queries to  and other 
proof oracles.

f

f : L → 𝔽

7

Convenience



Constrained RS tests

8



Constrained RS tests

8

Reed-Solomon Proximity Test on virtual function: 

f′ (x) :=
f(x) − y

x − z

What we are running:



Constrained RS tests

8

Reed-Solomon Proximity Test on virtual function: 

f′ (x) :=
f(x) − y

x − z

What we are running: What we really want to show:

I have a polynomial  and a commitment to (an 
encoding of it)  such that  

̂f
f

̂f(z) = y



Constrained RS tests

8

Reed-Solomon Proximity Test on virtual function: 

f′ (x) :=
f(x) − y

x − z

What we are running: What we really want to show:

I have a polynomial  and a commitment to (an 
encoding of it)  such that  

̂f
f

̂f(z) = y

Break it down as:

Test for constrained encoding



Constrained RS tests

8

Reed-Solomon Proximity Test on virtual function: 

f′ (x) :=
f(x) − y

x − z

What we are running: What we really want to show:

I have a polynomial  and a commitment to (an 
encoding of it)  such that  

̂f
f

̂f(z) = y

Break it down as:

Test for constrained encoding

Quotient f′ (x) :=
f(x) − y

x − z



Constrained RS tests

8

Reed-Solomon Proximity Test on virtual function: 

f′ (x) :=
f(x) − y

x − z

What we are running: What we really want to show:

I have a polynomial  and a commitment to (an 
encoding of it)  such that  

̂f
f

̂f(z) = y

Break it down as:

Test for constrained encoding

Quotient f′ (x) :=
f(x) − y

x − z
Reed—Solomon 

proximity test for f′ 
+



Constrained RS tests

8

Reed-Solomon Proximity Test on virtual function: 

f′ (x) :=
f(x) − y

x − z

What we are running: What we really want to show:

I have a polynomial  and a commitment to (an 
encoding of it)  such that  

̂f
f

̂f(z) = y

Break it down as:

Test for constrained encoding

Quotient f′ (x) :=
f(x) − y

x − z
Reed—Solomon 

proximity test for f′ 
+

We are designing a proximity 
test just to check this 
constraint. 



Constrained RS tests

8

Reed-Solomon Proximity Test on virtual function: 

f′ (x) :=
f(x) − y

x − z

What we are running: What we really want to show:

I have a polynomial  and a commitment to (an 
encoding of it)  such that  

̂f
f

̂f(z) = y

Break it down as:

Test for constrained encoding

Quotient f′ (x) :=
f(x) − y

x − z
Reed—Solomon 

proximity test for f′ 
+

We are designing a proximity 
test just to check this 
constraint. 

Can we move the constraint 
directly into the IOPP?



Constrained RS codes

9



Constrained RS codes

𝖱𝖲[n, m, ρ] := Evaluations of univariate 
 on ̂f ∈ 𝔽<2m[X] L{ }

9



Constrained RS codes

𝖱𝖲[n, m, ρ] := Evaluations of univariate 
 on ̂f ∈ 𝔽<2m[X] L{ }

9

Rewrite RS codes to be 
about multilinear 

polynomials: 
 

implies that 
𝖼𝗈𝖾𝖿𝖿( ̂p) = 𝖼𝗈𝖾𝖿𝖿( ̂q)

̂p(z) = ̂q(z, z2, …, z2m−1)



Constrained RS codes

𝖱𝖲[n, m, ρ] := Evaluations of univariate 
 on ̂f ∈ 𝔽<2m[X] L{ }

9

= Evaluations of multilinear 
 on ̂f ∈ 𝔽≤1[X1, …, Xm] L{ }

Rewrite RS codes to be 
about multilinear 

polynomials: 
 

implies that 
𝖼𝗈𝖾𝖿𝖿( ̂p) = 𝖼𝗈𝖾𝖿𝖿( ̂q)

̂p(z) = ̂q(z, z2, …, z2m−1)



Constrained RS codes

𝖱𝖲[n, m, ρ] := Evaluations of univariate 
 on ̂f ∈ 𝔽<2m[X] L{ }

9

= Evaluations of multilinear 
 on ̂f ∈ 𝔽≤1[X1, …, Xm] L{ }

𝖢𝖱𝖲[n, m, ρ, ŵ, σ] :=

Rewrite RS codes to be 
about multilinear 

polynomials: 
 

implies that 
𝖼𝗈𝖾𝖿𝖿( ̂p) = 𝖼𝗈𝖾𝖿𝖿( ̂q)

̂p(z) = ̂q(z, z2, …, z2m−1)



Constrained RS codes

𝖱𝖲[n, m, ρ] := Evaluations of univariate 
 on ̂f ∈ 𝔽<2m[X] L{ }

9

= Evaluations of multilinear 
 on ̂f ∈ 𝔽≤1[X1, …, Xm] L{ }

𝖢𝖱𝖲[n, m, ρ, ŵ, σ] :=

Rewrite RS codes to be 
about multilinear 

polynomials: 
 

implies that 
𝖼𝗈𝖾𝖿𝖿( ̂p) = 𝖼𝗈𝖾𝖿𝖿( ̂q)

̂p(z) = ̂q(z, z2, …, z2m−1)

Constraint



Constrained RS codes

𝖱𝖲[n, m, ρ] := Evaluations of univariate 
 on ̂f ∈ 𝔽<2m[X] L{ }

9

= Evaluations of multilinear 
 on ̂f ∈ 𝔽≤1[X1, …, Xm] L{ }

𝖢𝖱𝖲[n, m, ρ, ŵ, σ] :=

Rewrite RS codes to be 
about multilinear 

polynomials: 
 

implies that 
𝖼𝗈𝖾𝖿𝖿( ̂p) = 𝖼𝗈𝖾𝖿𝖿( ̂q)

̂p(z) = ̂q(z, z2, …, z2m−1)

Constraint Value of 
constraint



Constrained RS codes

𝖱𝖲[n, m, ρ] := Evaluations of univariate 
 on ̂f ∈ 𝔽<2m[X] L{ }

9

= Evaluations of multilinear 
 on ̂f ∈ 𝔽≤1[X1, …, Xm] L{ }

Evaluations of multilinear 
 on ̂f ∈ 𝔽≤1[X1, …, Xm] L{ }: ∑

b∈{0,1}m

ŵ( ̂f(b), b) = σ𝖢𝖱𝖲[n, m, ρ, ŵ, σ] :=

Rewrite RS codes to be 
about multilinear 

polynomials: 
 

implies that 
𝖼𝗈𝖾𝖿𝖿( ̂p) = 𝖼𝗈𝖾𝖿𝖿( ̂q)

̂p(z) = ̂q(z, z2, …, z2m−1)

Constraint Value of 
constraint



Constrained RS codes

𝖱𝖲[n, m, ρ] := Evaluations of univariate 
 on ̂f ∈ 𝔽<2m[X] L{ }

9

= Evaluations of multilinear 
 on ̂f ∈ 𝔽≤1[X1, …, Xm] L{ }

Evaluations of multilinear 
 on ̂f ∈ 𝔽≤1[X1, …, Xm] L{ }: ∑

b∈{0,1}m

ŵ( ̂f(b), b) = σ𝖢𝖱𝖲[n, m, ρ, ŵ, σ] :=

Rewrite RS codes to be 
about multilinear 

polynomials: 
 

implies that 
𝖼𝗈𝖾𝖿𝖿( ̂p) = 𝖼𝗈𝖾𝖿𝖿( ̂q)

̂p(z) = ̂q(z, z2, …, z2m−1)

Constraint Value of 
constraint

𝖱𝖲[n, m, ρ] = 𝖢𝖱𝖲[n, m, ρ,0,0]



Constrained RS codes

𝖱𝖲[n, m, ρ] := Evaluations of univariate 
 on ̂f ∈ 𝔽<2m[X] L{ }

9

= Evaluations of multilinear 
 on ̂f ∈ 𝔽≤1[X1, …, Xm] L{ }

Evaluations of multilinear 
 on ̂f ∈ 𝔽≤1[X1, …, Xm] L{ }: ∑

b∈{0,1}m

ŵ( ̂f(b), b) = σ𝖢𝖱𝖲[n, m, ρ, ŵ, σ] :=

Rewrite RS codes to be 
about multilinear 

polynomials: 
 

implies that 
𝖼𝗈𝖾𝖿𝖿( ̂p) = 𝖼𝗈𝖾𝖿𝖿( ̂q)

̂p(z) = ̂q(z, z2, …, z2m−1)

Constraint Value of 
constraint

If  we recover 
multilinear polynomial evaluation

ŵ = Z ⋅ 𝖾𝗊(X, r)𝖱𝖲[n, m, ρ] = 𝖢𝖱𝖲[n, m, ρ,0,0]



Our results



WHIR 🌪
A constrained Reed-Solomon proximity test

11

 is a folding 
parameter

k > 1



WHIR 🌪
A constrained Reed-Solomon proximity test

Rounds:  

Alphabet:  

Proof length:  

Verifier time: 

O (m)

𝔽2k

O(n/2k)

O (q𝖶𝖧𝖨𝖱 ⋅ (2k + m))

11

 is a folding 
parameter

k > 1



WHIR 🌪
A constrained Reed-Solomon proximity test

Rounds:  

Alphabet:  

Proof length:  

Verifier time: 

O (m)

𝔽2k

O(n/2k)

O (q𝖶𝖧𝖨𝖱 ⋅ (2k + m))

Query complexity: 

q𝖶𝖧𝖨𝖱 = O ( λ
k

⋅ log m) = O(λ)

11

 is a folding 
parameter

k > 1



WHIR 🌪
A constrained Reed-Solomon proximity test

Rounds:  

Alphabet:  

Proof length:  

Verifier time: 

O (m)

𝔽2k

O(n/2k)

O (q𝖶𝖧𝖨𝖱 ⋅ (2k + m))

Query complexity: 

q𝖶𝖧𝖨𝖱 = O ( λ
k

⋅ log m) = O(λ)

λ ≫ m

11

 is a folding 
parameter

k > 1



WHIR 🌪
A constrained Reed-Solomon proximity test

Rounds:  

Alphabet:  

Proof length:  

Verifier time: 

O (m)

𝔽2k

O(n/2k)

O (q𝖶𝖧𝖨𝖱 ⋅ (2k + m))

Query complexity: 

q𝖶𝖧𝖨𝖱 = O ( λ
k

⋅ log m) = O(λ)

λ ≫ m

11

k ≈ log m

 is a folding 
parameter

k > 1



Comparison with prior work

Queries Verifier Time Alphabet

BaseFold

FRI

STIR

WHIR

q𝖡𝖥 = O(λ ⋅ m)

q𝖥𝖱𝖨 = O ( λ
k

⋅ m)
q𝖲𝖳𝖨𝖱 = O ( λ

k
⋅ log m)

q𝖶𝖧𝖨𝖱 = O ( λ
k

⋅ log m)

O(q𝖡𝖥)

O(q𝖥𝖱𝖨 ⋅ 2k)

O(q𝖲𝖳𝖨𝖱 ⋅ 2k+λ2 ⋅ 2k)

O(q𝖶𝖧𝖨𝖱 ⋅ (2k + m))

𝔽2

𝔽2k

𝔽2k

𝔽2k

12



Comparison to STIR and FRI

13



Comparison to STIR and FRI O ( λ
k

⋅ m)
O ( λ

k
⋅ log m)

FRI:

STIR & WHIR

13



Comparison to STIR and FRI

• Drop-in replacement of FRI and STIR (when used for )𝖢𝖱𝖲[𝔽, m, ρ,0,0]

O ( λ
k

⋅ m)
O ( λ

k
⋅ log m)

FRI:

STIR & WHIR

13



Comparison to STIR and FRI

• Drop-in replacement of FRI and STIR (when used for )𝖢𝖱𝖲[𝔽, m, ρ,0,0]

• Same benefits as STIR over FRI, and similar prover time.

O ( λ
k

⋅ m)
O ( λ

k
⋅ log m)

FRI:

STIR & WHIR

13



Comparison to STIR and FRI

• Drop-in replacement of FRI and STIR (when used for )𝖢𝖱𝖲[𝔽, m, ρ,0,0]

• Same benefits as STIR over FRI, and similar prover time.

• Additionally, richer proximity tests means that:

O ( λ
k

⋅ m)
O ( λ

k
⋅ log m)

FRI:

STIR & WHIR

13



Comparison to STIR and FRI

• Drop-in replacement of FRI and STIR (when used for )𝖢𝖱𝖲[𝔽, m, ρ,0,0]

• Same benefits as STIR over FRI, and similar prover time.

• Additionally, richer proximity tests means that:

• Can be used as a multilinear PCS (instead of BaseFold, FRI-Binius, etc)

O ( λ
k

⋅ m)
O ( λ

k
⋅ log m)

FRI:

STIR & WHIR

13



Comparison to STIR and FRI

• Drop-in replacement of FRI and STIR (when used for )𝖢𝖱𝖲[𝔽, m, ρ,0,0]

• Same benefits as STIR over FRI, and similar prover time.

• Additionally, richer proximity tests means that:

• Can be used as a multilinear PCS (instead of BaseFold, FRI-Binius, etc)

• Can be used in compiler for Σ-IOP (extra slides)

O ( λ
k

⋅ m)
O ( λ

k
⋅ log m)

FRI:

STIR & WHIR

13



Comparison to STIR and FRI

• Drop-in replacement of FRI and STIR (when used for )𝖢𝖱𝖲[𝔽, m, ρ,0,0]

• Same benefits as STIR over FRI, and similar prover time.

• Additionally, richer proximity tests means that:

• Can be used as a multilinear PCS (instead of BaseFold, FRI-Binius, etc)

• Can be used in compiler for Σ-IOP (extra slides)

• Further, super-fast verification (next)

O ( λ
k

⋅ m)
O ( λ

k
⋅ log m)

FRI:

STIR & WHIR

13



Implementation

14



Implementation
• Rust 🦀 implementation, available at WizardOfMenlo/whir 

14

https://github.com/WizardOfMenlo/whir
http://arkworks.rs


Implementation
• Rust 🦀 implementation, available at WizardOfMenlo/whir 

• Arkworks as backend, (extension of) Goldilocks for benchmarks

14

https://github.com/WizardOfMenlo/whir
http://arkworks.rs


Implementation
• Rust 🦀 implementation, available at WizardOfMenlo/whir 

• Arkworks as backend, (extension of) Goldilocks for benchmarks

• Huge thanks to Remco Bloemen!!!

14

https://github.com/WizardOfMenlo/whir
http://arkworks.rs


Implementation
• Rust 🦀 implementation, available at WizardOfMenlo/whir 

• Arkworks as backend, (extension of) Goldilocks for benchmarks

• Huge thanks to Remco Bloemen!!!

• We compared to FRI, STIR and BaseFold.

14

https://github.com/WizardOfMenlo/whir
http://arkworks.rs


Super fast verifier

15



Super fast verifier
• The WHIR verifier typically runs in a few hundred microseconds.

15



Super fast verifier
• The WHIR verifier typically runs in a few hundred microseconds.

• Other verifiers require several milliseconds (and more).

15



Super fast verifier
• The WHIR verifier typically runs in a few hundred microseconds.

• Other verifiers require several milliseconds (and more).

• Without compromising prover time & argument size

15



Super fast verifier
• The WHIR verifier typically runs in a few hundred microseconds.

• Other verifiers require several milliseconds (and more).

• Without compromising prover time & argument size

• As a PCS for degree , 100 bits of security:222

15



Super fast verifier
• The WHIR verifier typically runs in a few hundred microseconds.

• Other verifiers require several milliseconds (and more).

• Without compromising prover time & argument size

• As a PCS for degree , 100 bits of security:222

Prover time: ~1s (MacBook Air) 

Commit & open: 63 KiB 

Verifier time: 270 μs (0.27 ms)
15



Super fast verifier
• The WHIR verifier typically runs in a few hundred microseconds.


• Other verifiers require several milliseconds (and more).


• Without compromising prover time & argument size


• As a PCS for degree :224

16

Schemes with trusted 
setup using pairings!



Comparison with BaseFold

17

BaseFold: ⤫

WHIR-UD: ▲


WHIR-CB: ▲



Comparison with BaseFold

17

BaseFold: ⤫

WHIR-UD: ▲


WHIR-CB: ▲

Remark: BaseFold 
implementation is not 

fully optimised



Comparison with FRI (and STIR)

18

128-bits security level.
 bits of PoW + “list-decoding” assumptions.λ = 106 + 22



Comparison with FRI (and STIR)

FRI WHIR

Size (KiB) 177 106

Verifier time 2.4ms 700μs

m = 24, ρ = 1/4

18

128-bits security level.
 bits of PoW + “list-decoding” assumptions.λ = 106 + 22



Comparison with FRI (and STIR)

FRI WHIR

Size (KiB) 177 106

Verifier time 2.4ms 700μs

m = 24, ρ = 1/4

FRI WHIR

Size (KiB) 494 187

Verifier time 4.4ms 1.3ms

d = 30, ρ = 1/2

18

128-bits security level.
 bits of PoW + “list-decoding” assumptions.λ = 106 + 22



Comparison with FRI (and STIR)

FRI WHIR

Size (KiB) 177 106

Verifier time 2.4ms 700μs

m = 24, ρ = 1/4

FRI WHIR

Size (KiB) 494 187

Verifier time 4.4ms 1.3ms

d = 30, ρ = 1/2

ρ = 1/2

18

128-bits security level.
 bits of PoW + “list-decoding” assumptions.λ = 106 + 22



Conclusion



Summary



Summary

WHIR 🌪: a new IOPP for CRS codes.



Summary

WHIR 🌪: a new IOPP for CRS codes.

Query complexity: 

 

Verifier complexity: 

O ( λ
k

⋅ log m)

O(q𝖶𝖧𝖨𝖱 ⋅ (2k + m))



Summary

WHIR 🌪: a new IOPP for CRS codes.

Query complexity: 

 

Verifier complexity: 

O ( λ
k

⋅ log m)

O(q𝖶𝖧𝖨𝖱 ⋅ (2k + m))

• State-of-the-art argument size and hash complexity



Summary

WHIR 🌪: a new IOPP for CRS codes.

Query complexity: 

 

Verifier complexity: 

O ( λ
k

⋅ log m)

O(q𝖶𝖧𝖨𝖱 ⋅ (2k + m))

• State-of-the-art argument size and hash complexity

• Fastest verification of any PCS (including trusted setups!)



Summary

WHIR 🌪: a new IOPP for CRS codes.

Query complexity: 

 

Verifier complexity: 

O ( λ
k

⋅ log m)

O(q𝖶𝖧𝖨𝖱 ⋅ (2k + m))

• State-of-the-art argument size and hash complexity

• Fastest verification of any PCS (including trusted setups!)

• Enables high-soundness compilation for Σ-IOP 

Σ-IOP CRS IOPP 
(WHIR 🌪) IOP+ =



Extra slides



Techniques



Reduce  to 𝖱𝖲[n, m, ρ] 𝖱𝖲[n/2k, m − k, ρ]
FRI & STIR Folding

23

(Think )k = 4



Reduce  to 𝖱𝖲[n, m, ρ] 𝖱𝖲[n/2k, m − k, ρ]
FRI & STIR Folding

23

Unchanged!(Think )k = 4



Reduce  to 𝖱𝖲[n, m, ρ] 𝖱𝖲[n/2k, m − k, ρ]
FRI & STIR Folding

23

f : L → 𝔽

P V

Unchanged!(Think )k = 4



Reduce  to 𝖱𝖲[n, m, ρ] 𝖱𝖲[n/2k, m − k, ρ]
FRI & STIR Folding

23

f : L → 𝔽

P V α ← 𝔽α

Unchanged!(Think )k = 4



Reduce  to 𝖱𝖲[n, m, ρ] 𝖱𝖲[n/2k, m − k, ρ]
FRI & STIR Folding

23

f : L → 𝔽

P V α ← 𝔽α

𝖥𝗈𝗅𝖽( f, α)

Unchanged!(Think )k = 4



Reduce  to 𝖱𝖲[n, m, ρ] 𝖱𝖲[n/2k, m − k, ρ]
FRI & STIR Folding

23

f : L → 𝔽

P V α ← 𝔽α

A virtual function 𝖥𝗈𝗅𝖽( f, α)

Unchanged!(Think )k = 4



Reduce  to 𝖱𝖲[n, m, ρ] 𝖱𝖲[n/2k, m − k, ρ]
FRI & STIR Folding

23

f : L → 𝔽

P V α ← 𝔽α

How? Inspiration from FFTs, for : 

 

Can extend to every  that is a power of two.

k = 1

𝖥𝗈𝗅𝖽( f, α) := f𝗈𝖽𝖽 + α ⋅ f𝖾𝗏𝖾𝗇

k

A virtual function 𝖥𝗈𝗅𝖽( f, α)

Unchanged!(Think )k = 4



Reduce  to 𝖱𝖲[n, m, ρ] 𝖱𝖲[n/2k, m − k, ρ]
FRI & STIR Folding

23

f : L → 𝔽

P V α ← 𝔽α

How? Inspiration from FFTs, for : 

 

Can extend to every  that is a power of two.

k = 1

𝖥𝗈𝗅𝖽( f, α) := f𝗈𝖽𝖽 + α ⋅ f𝖾𝗏𝖾𝗇

k

Properties:

A virtual function 𝖥𝗈𝗅𝖽( f, α)

Unchanged!(Think )k = 4



Reduce  to 𝖱𝖲[n, m, ρ] 𝖱𝖲[n/2k, m − k, ρ]
FRI & STIR Folding

23

f : L → 𝔽

P V α ← 𝔽α

How? Inspiration from FFTs, for : 

 

Can extend to every  that is a power of two.

k = 1

𝖥𝗈𝗅𝖽( f, α) := f𝗈𝖽𝖽 + α ⋅ f𝖾𝗏𝖾𝗇

k

Properties:

A virtual function 𝖥𝗈𝗅𝖽( f, α)

Unchanged!

Local: compute  at any 
point  with  queries to .

𝖥𝗈𝗅𝖽( f, α)(z)
z ∈ L2k 2k f(Think )k = 4



Reduce  to 𝖱𝖲[n, m, ρ] 𝖱𝖲[n/2k, m − k, ρ]
FRI & STIR Folding

23

f : L → 𝔽

P V α ← 𝔽α

How? Inspiration from FFTs, for : 

 

Can extend to every  that is a power of two.

k = 1

𝖥𝗈𝗅𝖽( f, α) := f𝗈𝖽𝖽 + α ⋅ f𝖾𝗏𝖾𝗇

k

Properties:

A virtual function 𝖥𝗈𝗅𝖽( f, α)

Unchanged!

Local: compute  at any 
point  with  queries to .

𝖥𝗈𝗅𝖽( f, α)(z)
z ∈ L2k 2k f

Distance preservation: if  is -far from 
, then w.h.p.  remains 

also -far from 

f δ
𝖱𝖲[n, m, ρ] 𝖥𝗈𝗅𝖽( f, α)

δ 𝖱𝖲[n/2k, m − k, ρ]

δ ∈ (0,1 − ρ)

(Think )k = 4



Reduce  to 𝖱𝖲[n, m, ρ] 𝖱𝖲[n/2k, m − k, ρ]
FRI & STIR Folding

23

f : L → 𝔽

P V α ← 𝔽α

How? Inspiration from FFTs, for : 

 

Can extend to every  that is a power of two.

k = 1

𝖥𝗈𝗅𝖽( f, α) := f𝗈𝖽𝖽 + α ⋅ f𝖾𝗏𝖾𝗇

k

Properties:

A virtual function 𝖥𝗈𝗅𝖽( f, α)

Unchanged!

Local: compute  at any 
point  with  queries to .

𝖥𝗈𝗅𝖽( f, α)(z)
z ∈ L2k 2k f

Distance preservation: if  is -far from 
, then w.h.p.  remains 

also -far from 

f δ
𝖱𝖲[n, m, ρ] 𝖥𝗈𝗅𝖽( f, α)

δ 𝖱𝖲[n/2k, m − k, ρ]

δ ∈ (0,1 − ρ)

Unless w.p. , the 

fraction of “corrupted” entries does 
not decrease.

≈
𝗉𝗈𝗅𝗒(n,2m)

|𝔽 |

(Think )k = 4



Reduce  to 𝖱𝖲[n, m, ρ] 𝖱𝖲[n/2k, m − k, ρ]
FRI & STIR Folding

23

f : L → 𝔽

P V α ← 𝔽α

How? Inspiration from FFTs, for : 

 

Can extend to every  that is a power of two.

k = 1

𝖥𝗈𝗅𝖽( f, α) := f𝗈𝖽𝖽 + α ⋅ f𝖾𝗏𝖾𝗇

k

Properties:

A virtual function 𝖥𝗈𝗅𝖽( f, α)

Unchanged!

Local: compute  at any 
point  with  queries to .

𝖥𝗈𝗅𝖽( f, α)(z)
z ∈ L2k 2k f

Distance preservation: if  is -far from 
, then w.h.p.  remains 

also -far from 

f δ
𝖱𝖲[n, m, ρ] 𝖥𝗈𝗅𝖽( f, α)

δ 𝖱𝖲[n/2k, m − k, ρ]

δ ∈ (0,1 − ρ)

Unless w.p. , the 

fraction of “corrupted” entries does 
not decrease.

≈
𝗉𝗈𝗅𝗒(n,2m)

|𝔽 |

(Think )k = 4



Test a random linear combination
Mutual correlated agreement

24



Test a random linear combination
Mutual correlated agreement

24

f1



Test a random linear combination
Mutual correlated agreement

24

f1

…

fm



Test a random linear combination
Mutual correlated agreement

24

f1

…

fm

⟹

f* := ∑
i

ri fi

r ← 𝔽m



Test a random linear combination
Mutual correlated agreement

24

f1

…

fm

⟹

f* := ∑
i

ri fi

r ← 𝔽m

if w.h.p. :Δ( f*, 𝒞) ≤ δ



Test a random linear combination
Mutual correlated agreement

24

f1

…

fm

⟹

f* := ∑
i

ri fi

r ← 𝔽m

if w.h.p. :Δ( f*, 𝒞) ≤ δ



Test a random linear combination
Mutual correlated agreement

24

f1

…

fm

⟹

f* := ∑
i

ri fi

r ← 𝔽m

if w.h.p. :Δ( f*, 𝒞) ≤ δ

Agreement: then .Δ( fi, 𝒞) ≤ δ



Test a random linear combination
Mutual correlated agreement

24

f1

…

fm

⟹

f* := ∑
i

ri fi

r ← 𝔽m

if w.h.p. :Δ( f*, 𝒞) ≤ δ

Agreement: then .Δ( fi, 𝒞) ≤ δ



Test a random linear combination
Mutual correlated agreement

24

f1

…

fm

⟹

f* := ∑
i

ri fi

r ← 𝔽m

if w.h.p. :Δ( f*, 𝒞) ≤ δ

Agreement: then .Δ( fi, 𝒞) ≤ δ

Correlated agreement: then  
agree with  on the same “stripe”

f1, …, fm
𝒞



Test a random linear combination
Mutual correlated agreement

24

f1

…

fm

⟹

f* := ∑
i

ri fi

r ← 𝔽m

if w.h.p. :Δ( f*, 𝒞) ≤ δ

Agreement: then .Δ( fi, 𝒞) ≤ δ

Correlated agreement: then  
agree with  on the same “stripe”

f1, …, fm
𝒞



Test a random linear combination
Mutual correlated agreement

24

f1

…

fm

⟹

f* := ∑
i

ri fi

r ← 𝔽m

if w.h.p. :Δ( f*, 𝒞) ≤ δ

Agreement: then .Δ( fi, 𝒞) ≤ δ

Correlated agreement: then  
agree with  on the same “stripe”

f1, …, fm
𝒞



Test a random linear combination
Mutual correlated agreement

24

f1

…

fm

⟹

f* := ∑
i

ri fi

r ← 𝔽m

if w.h.p. :Δ( f*, 𝒞) ≤ δ

Agreement: then .Δ( fi, 𝒞) ≤ δ

Correlated agreement: then  
agree with  on the same “stripe”

f1, …, fm
𝒞

Mutual correlated agreement: the stripe 
in which  agree with  is the 
same on which  does: 
 
“No new correlated domains appear”

f1, …, fm 𝒞
f*



Implied by mutual correlated agreement
List-RLC lemma and List-Fold

25

 is the list of 
codewords of  that are -close 

to 

Λ(𝒞, f, δ)
𝒞 δ

f



Implied by mutual correlated agreement
List-RLC lemma and List-Fold

25

f1, …, fm : L → 𝔽

 is the list of 
codewords of  that are -close 

to 

Λ(𝒞, f, δ)
𝒞 δ

f



Implied by mutual correlated agreement
List-RLC lemma and List-Fold

25

f1, …, fm : L → 𝔽

• Taking lists and (random) combinations commute (if 
mutual correlated agreement holds). 

 is the list of 
codewords of  that are -close 

to 

Λ(𝒞, f, δ)
𝒞 δ

f



Implied by mutual correlated agreement
List-RLC lemma and List-Fold

25

f1, …, fm : L → 𝔽

⟨ ⋅ , r⟩

• Taking lists and (random) combinations commute (if 
mutual correlated agreement holds). 

 is the list of 
codewords of  that are -close 

to 

Λ(𝒞, f, δ)
𝒞 δ

f



Implied by mutual correlated agreement
List-RLC lemma and List-Fold

25

f1, …, fm : L → 𝔽

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩

• Taking lists and (random) combinations commute (if 
mutual correlated agreement holds). 

 is the list of 
codewords of  that are -close 

to 

Λ(𝒞, f, δ)
𝒞 δ

f



Implied by mutual correlated agreement
List-RLC lemma and List-Fold

25

f1, …, fm : L → 𝔽

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩

• Taking lists and (random) combinations commute (if 
mutual correlated agreement holds). 

 is the list of 
codewords of  that are -close 

to 

Λ(𝒞, f, δ)
𝒞 δ

f



Implied by mutual correlated agreement
List-RLC lemma and List-Fold

25

f1, …, fm : L → 𝔽 Λ(𝒞m, ⋅ ,δ)

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩

• Taking lists and (random) combinations commute (if 
mutual correlated agreement holds). 

 is the list of 
codewords of  that are -close 

to 

Λ(𝒞, f, δ)
𝒞 δ

f



Implied by mutual correlated agreement
List-RLC lemma and List-Fold

25

f1, …, fm : L → 𝔽 Λ(𝒞m, ⋅ ,δ)

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩

• Taking lists and (random) combinations commute (if 
mutual correlated agreement holds). 

 is the list of 
codewords of  that are -close 

to 

Λ(𝒞, f, δ)
𝒞 δ

f



Implied by mutual correlated agreement
List-RLC lemma and List-Fold

25

f1, …, fm : L → 𝔽 Λ(𝒞m, ⋅ ,δ)

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩ ⟨ ⋅ , r⟩

• Taking lists and (random) combinations commute (if 
mutual correlated agreement holds). 

 is the list of 
codewords of  that are -close 

to 

Λ(𝒞, f, δ)
𝒞 δ

f



Implied by mutual correlated agreement
List-RLC lemma and List-Fold

25

f1, …, fm : L → 𝔽 Λ(𝒞m, ⋅ ,δ)

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩ ⟨ ⋅ , r⟩

• Taking lists and (random) combinations commute (if 
mutual correlated agreement holds). 

• Random linear combination version: w.h.p. over :r
Λ(𝒞, ⟨f, r⟩, δ) = {⟨u, r⟩ : u ∈ Λ(𝒞m, f, δ)}

 is the list of 
codewords of  that are -close 

to 

Λ(𝒞, f, δ)
𝒞 δ

f



Implied by mutual correlated agreement
List-RLC lemma and List-Fold

25

f1, …, fm : L → 𝔽 Λ(𝒞m, ⋅ ,δ)

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩ ⟨ ⋅ , r⟩

• Taking lists and (random) combinations commute (if 
mutual correlated agreement holds). 

• Random linear combination version: w.h.p. over :r
Λ(𝒞, ⟨f, r⟩, δ) = {⟨u, r⟩ : u ∈ Λ(𝒞m, f, δ)}

• Folding version: w.h.p. over :α
Λ(𝒞, 𝖥𝗈𝗅𝖽( f, α), δ) = {𝖥𝗈𝗅𝖽(u, α) : u ∈ Λ(𝒞, f, δ)}

 is the list of 
codewords of  that are -close 

to 

Λ(𝒞, f, δ)
𝒞 δ

f



Implied by mutual correlated agreement
List-RLC lemma and List-Fold

25

f1, …, fm : L → 𝔽 Λ(𝒞m, ⋅ ,δ)

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩ ⟨ ⋅ , r⟩

• Taking lists and (random) combinations commute (if 
mutual correlated agreement holds). 

• Random linear combination version: w.h.p. over :r
Λ(𝒞, ⟨f, r⟩, δ) = {⟨u, r⟩ : u ∈ Λ(𝒞m, f, δ)}

• Folding version: w.h.p. over :α
Λ(𝒞, 𝖥𝗈𝗅𝖽( f, α), δ) = {𝖥𝗈𝗅𝖽(u, α) : u ∈ Λ(𝒞, f, δ)}

• Alternatively, each term in the l.h.s can be “explained" 
by terms in the r.h.s.

 is the list of 
codewords of  that are -close 

to 

Λ(𝒞, f, δ)
𝒞 δ

f



Implied by mutual correlated agreement
List-RLC lemma and List-Fold

25

f1, …, fm : L → 𝔽 Λ(𝒞m, ⋅ ,δ)

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩ ⟨ ⋅ , r⟩

• Taking lists and (random) combinations commute (if 
mutual correlated agreement holds). 

• Random linear combination version: w.h.p. over :r
Λ(𝒞, ⟨f, r⟩, δ) = {⟨u, r⟩ : u ∈ Λ(𝒞m, f, δ)}

• Folding version: w.h.p. over :α
Λ(𝒞, 𝖥𝗈𝗅𝖽( f, α), δ) = {𝖥𝗈𝗅𝖽(u, α) : u ∈ Λ(𝒞, f, δ)}

• Alternatively, each term in the l.h.s can be “explained" 
by terms in the r.h.s.

• We show correlated agreement implies mutual 
correlated agreement in unique decoding.

 is the list of 
codewords of  that are -close 

to 

Λ(𝒞, f, δ)
𝒞 δ

f



Implied by mutual correlated agreement
List-RLC lemma and List-Fold

25

f1, …, fm : L → 𝔽 Λ(𝒞m, ⋅ ,δ)

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩ ⟨ ⋅ , r⟩

• Taking lists and (random) combinations commute (if 
mutual correlated agreement holds). 

• Random linear combination version: w.h.p. over :r
Λ(𝒞, ⟨f, r⟩, δ) = {⟨u, r⟩ : u ∈ Λ(𝒞m, f, δ)}

• Folding version: w.h.p. over :α
Λ(𝒞, 𝖥𝗈𝗅𝖽( f, α), δ) = {𝖥𝗈𝗅𝖽(u, α) : u ∈ Λ(𝒞, f, δ)}

• Alternatively, each term in the l.h.s can be “explained" 
by terms in the r.h.s.

• We show correlated agreement implies mutual 
correlated agreement in unique decoding.

 is the list of 
codewords of  that are -close 

to 

Λ(𝒞, f, δ)
𝒞 δ

f

Stronger than what is required 
for STIR’s soundness



Implied by mutual correlated agreement
List-RLC lemma and List-Fold

25

f1, …, fm : L → 𝔽 Λ(𝒞m, ⋅ ,δ)

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩ ⟨ ⋅ , r⟩

• Taking lists and (random) combinations commute (if 
mutual correlated agreement holds). 

• Random linear combination version: w.h.p. over :r
Λ(𝒞, ⟨f, r⟩, δ) = {⟨u, r⟩ : u ∈ Λ(𝒞m, f, δ)}

• Folding version: w.h.p. over :α
Λ(𝒞, 𝖥𝗈𝗅𝖽( f, α), δ) = {𝖥𝗈𝗅𝖽(u, α) : u ∈ Λ(𝒞, f, δ)}

• Alternatively, each term in the l.h.s can be “explained" 
by terms in the r.h.s.

• We show correlated agreement implies mutual 
correlated agreement in unique decoding.

 is the list of 
codewords of  that are -close 

to 

Λ(𝒞, f, δ)
𝒞 δ

f

Stronger than what is required 
for STIR’s soundness

Recent results show it holds up to 1.5 Johnson for 
general linear codes!



Reduce  to 𝖢𝖱𝖲[n, m, ρ, ŵ, σ] 𝖢𝖱𝖲[n/2,m − 1, ρ, ŵα, σα]

WHIR Folding

26



Reduce  to 𝖢𝖱𝖲[n, m, ρ, ŵ, σ] 𝖢𝖱𝖲[n/2,m − 1, ρ, ŵα, σα]

WHIR Folding

26

Interleave sumcheck with FRI folding, 
similar to BaseFold, Hyperplonk, Gemini



Reduce  to 𝖢𝖱𝖲[n, m, ρ, ŵ, σ] 𝖢𝖱𝖲[n/2,m − 1, ρ, ŵα, σα]

WHIR Folding

26

f : L → 𝔽

P V

Interleave sumcheck with FRI folding, 
similar to BaseFold, Hyperplonk, Gemini



Reduce  to 𝖢𝖱𝖲[n, m, ρ, ŵ, σ] 𝖢𝖱𝖲[n/2,m − 1, ρ, ŵα, σα]

WHIR Folding

26

f : L → 𝔽

P V

Interleave sumcheck with FRI folding, 
similar to BaseFold, Hyperplonk, Gemini

ĥ
ĥ(X) := ∑

b∈{0,1}m−1

ŵ( ̂f(X, b), X, b)

h(0) + h(1) =? σ



Reduce  to 𝖢𝖱𝖲[n, m, ρ, ŵ, σ] 𝖢𝖱𝖲[n/2,m − 1, ρ, ŵα, σα]

WHIR Folding

26

f : L → 𝔽

P Vα

Interleave sumcheck with FRI folding, 
similar to BaseFold, Hyperplonk, Gemini

ĥ
ĥ(X) := ∑

b∈{0,1}m−1

ŵ( ̂f(X, b), X, b)

h(0) + h(1) =? σ



Reduce  to 𝖢𝖱𝖲[n, m, ρ, ŵ, σ] 𝖢𝖱𝖲[n/2,m − 1, ρ, ŵα, σα]

WHIR Folding

26

f : L → 𝔽

P Vα

Interleave sumcheck with FRI folding, 
similar to BaseFold, Hyperplonk, Gemini

ĥ
ĥ(X) := ∑

b∈{0,1}m−1

ŵ( ̂f(X, b), X, b)

h(0) + h(1) =? σ

𝖥𝗈𝗅𝖽( f, α)



Reduce  to 𝖢𝖱𝖲[n, m, ρ, ŵ, σ] 𝖢𝖱𝖲[n/2,m − 1, ρ, ŵα, σα]

WHIR Folding

26

f : L → 𝔽

P Vα

Interleave sumcheck with FRI folding, 
similar to BaseFold, Hyperplonk, Gemini

Completeness:  then:∑
b

ŵ( f(b), b) = σ

ĥ
ĥ(X) := ∑

b∈{0,1}m−1

ŵ( ̂f(X, b), X, b)

h(0) + h(1) =? σ

𝖥𝗈𝗅𝖽( f, α)



Reduce  to 𝖢𝖱𝖲[n, m, ρ, ŵ, σ] 𝖢𝖱𝖲[n/2,m − 1, ρ, ŵα, σα]

WHIR Folding

26

f : L → 𝔽

P Vα

Interleave sumcheck with FRI folding, 
similar to BaseFold, Hyperplonk, Gemini

Completeness:  then:∑
b

ŵ( f(b), b) = σ

• , h(0) + h(1) = σ

ĥ
ĥ(X) := ∑

b∈{0,1}m−1

ŵ( ̂f(X, b), X, b)

h(0) + h(1) =? σ

𝖥𝗈𝗅𝖽( f, α)



Reduce  to 𝖢𝖱𝖲[n, m, ρ, ŵ, σ] 𝖢𝖱𝖲[n/2,m − 1, ρ, ŵα, σα]

WHIR Folding

26

f : L → 𝔽

P Vα

Interleave sumcheck with FRI folding, 
similar to BaseFold, Hyperplonk, Gemini

Completeness:  then:∑
b

ŵ( f(b), b) = σ

• , h(0) + h(1) = σ

• ∑
b

ŵ( f(α, b), α, b) = ĥ(α)

ĥ
ĥ(X) := ∑

b∈{0,1}m−1

ŵ( ̂f(X, b), X, b)

h(0) + h(1) =? σ

𝖥𝗈𝗅𝖽( f, α)



Reduce  to 𝖢𝖱𝖲[n, m, ρ, ŵ, σ] 𝖢𝖱𝖲[n/2,m − 1, ρ, ŵα, σα]

WHIR Folding

26

f : L → 𝔽

P Vα

Interleave sumcheck with FRI folding, 
similar to BaseFold, Hyperplonk, Gemini

Completeness:  then:∑
b

ŵ( f(b), b) = σ

• , h(0) + h(1) = σ

• ∑
b

ŵ( f(α, b), α, b) = ĥ(α)

• ̂𝖥𝗈𝗅𝖽( f, α) = ̂f(α, ⋅ )

ĥ
ĥ(X) := ∑

b∈{0,1}m−1

ŵ( ̂f(X, b), X, b)

h(0) + h(1) =? σ

𝖥𝗈𝗅𝖽( f, α)



Reduce  to 𝖢𝖱𝖲[n, m, ρ, ŵ, σ] 𝖢𝖱𝖲[n/2,m − 1, ρ, ŵα, σα]

WHIR Folding

26

f : L → 𝔽

P Vα

Interleave sumcheck with FRI folding, 
similar to BaseFold, Hyperplonk, Gemini

Completeness:  then:∑
b

ŵ( f(b), b) = σ

• , h(0) + h(1) = σ

• ∑
b

ŵ( f(α, b), α, b) = ĥ(α)

• ̂𝖥𝗈𝗅𝖽( f, α) = ̂f(α, ⋅ )

ĥ
ĥ(X) := ∑

b∈{0,1}m−1

ŵ( ̂f(X, b), X, b)

h(0) + h(1) =? σ

Soundness: by mutual correlated agreement, 
w.h.p. if  then Δ( f, 𝖢𝖱𝖲[n, m, ρ, ŵ, σ]) > δ
Δ(𝖥𝗈𝗅𝖽( f, α), 𝖢𝖱𝖲[n/2,m − 1,ρ, ŵα, ĥ(α)]) > δ

𝖥𝗈𝗅𝖽( f, α)



Reduce  to 𝖢𝖱𝖲[n, m, ρ, ŵ, σ] 𝖢𝖱𝖲[n/2,m − 1, ρ, ŵα, σα]

WHIR Folding

26

f : L → 𝔽

P Vα

Interleave sumcheck with FRI folding, 
similar to BaseFold, Hyperplonk, Gemini

Completeness:  then:∑
b

ŵ( f(b), b) = σ

• , h(0) + h(1) = σ

• ∑
b

ŵ( f(α, b), α, b) = ĥ(α)

• ̂𝖥𝗈𝗅𝖽( f, α) = ̂f(α, ⋅ )

ĥ
ĥ(X) := ∑

b∈{0,1}m−1

ŵ( ̂f(X, b), X, b)

h(0) + h(1) =? σ

Soundness: by mutual correlated agreement, 
w.h.p. if  then Δ( f, 𝖢𝖱𝖲[n, m, ρ, ŵ, σ]) > δ
Δ(𝖥𝗈𝗅𝖽( f, α), 𝖢𝖱𝖲[n/2,m − 1,ρ, ŵα, ĥ(α)]) > δ

ŵα(Z, X) = ŵ(Z, α, X)

𝖥𝗈𝗅𝖽( f, α)



Reduce  to 𝖢𝖱𝖲[n, m, ρ, ŵ, σ] 𝖢𝖱𝖲[n/2,m − 1, ρ, ŵα, σα]

WHIR Folding

26

f : L → 𝔽

P Vα

Interleave sumcheck with FRI folding, 
similar to BaseFold, Hyperplonk, Gemini

Completeness:  then:∑
b

ŵ( f(b), b) = σ

• , h(0) + h(1) = σ

• ∑
b

ŵ( f(α, b), α, b) = ĥ(α)

• ̂𝖥𝗈𝗅𝖽( f, α) = ̂f(α, ⋅ )

ĥ
ĥ(X) := ∑

b∈{0,1}m−1

ŵ( ̂f(X, b), X, b)

h(0) + h(1) =? σ

Soundness: by mutual correlated agreement, 
w.h.p. if  then Δ( f, 𝖢𝖱𝖲[n, m, ρ, ŵ, σ]) > δ
Δ(𝖥𝗈𝗅𝖽( f, α), 𝖢𝖱𝖲[n/2,m − 1,ρ, ŵα, ĥ(α)]) > δ

Unchanged!ŵα(Z, X) = ŵ(Z, α, X)

𝖥𝗈𝗅𝖽( f, α)



Reduce  to 𝖢𝖱𝖲[n, m, ρ, ŵ, σ] 𝖢𝖱𝖲[n/2,m − 1, ρ, ŵα, σα]

WHIR Folding

26

f : L → 𝔽

P Vα

Interleave sumcheck with FRI folding, 
similar to BaseFold, Hyperplonk, Gemini

Completeness:  then:∑
b

ŵ( f(b), b) = σ

• , h(0) + h(1) = σ

• ∑
b

ŵ( f(α, b), α, b) = ĥ(α)

• ̂𝖥𝗈𝗅𝖽( f, α) = ̂f(α, ⋅ )

ĥ
ĥ(X) := ∑

b∈{0,1}m−1

ŵ( ̂f(X, b), X, b)

h(0) + h(1) =? σ

Soundness: by mutual correlated agreement, 
w.h.p. if  then Δ( f, 𝖢𝖱𝖲[n, m, ρ, ŵ, σ]) > δ
Δ(𝖥𝗈𝗅𝖽( f, α), 𝖢𝖱𝖲[n/2,m − 1,ρ, ŵα, ĥ(α)]) > δ

Unchanged!ŵα(Z, X) = ŵ(Z, α, X)

In the full protocol, we 
fold by 2-by-2  times. 
Can also fold by  at a 

time (nice for first round!)

k
2k

𝖥𝗈𝗅𝖽( f, α)



WHIR iteration

27



WHIR iteration

27

P V

f : L → 𝔽



WHIR iteration

27

P V

f : L → 𝔽

α1, …, αk ← 𝔽αi

ĥi



WHIR iteration

27

P V

f : L → 𝔽

α1, …, αk ← 𝔽αi

ĥi

Folding  times by k 2



WHIR iteration

27

P V

f : L → 𝔽

𝖥𝗈𝗅𝖽( f, α1, …, αk)

α1, …, αk ← 𝔽αi

ĥi

Folding  times by k 2



WHIR iteration

27

P V

f : L → 𝔽

𝖥𝗈𝗅𝖽( f, α1, …, αk)

α1, …, αk ← 𝔽αi

ĥi

g

Folding  times by k 2



WHIR iteration

27

P V

f : L → 𝔽

𝖥𝗈𝗅𝖽( f, α1, …, αk)

α1, …, αk ← 𝔽αi

ĥi

g  is over a domain of 
size 

g
n
2

≥
n
2k

Folding  times by k 2



WHIR iteration

27

P V

f : L → 𝔽

𝖥𝗈𝗅𝖽( f, α1, …, αk)

α1, …, αk ← 𝔽αi

ĥi

gClaimed to be 
same polynomial

 is over a domain of 
size 

g
n
2

≥
n
2k

Folding  times by k 2



WHIR iteration

27

P V

f : L → 𝔽

𝖥𝗈𝗅𝖽( f, α1, …, αk)

α1, …, αk ← 𝔽αi

ĥi

gClaimed to be 
same polynomial

 is over a domain of 
size 

g
n
2

≥
n
2k

Domain shift

Folding  times by k 2



WHIR iteration

27

P V

f : L → 𝔽

𝖥𝗈𝗅𝖽( f, α1, …, αk)

α1, …, αk ← 𝔽αi

ĥi

gClaimed to be 
same polynomial

 is over a domain of 
size 

g
n
2

≥
n
2k

Makes  queries to t f

Domain shift

Folding  times by k 2



WHIR iteration

27

P V

f : L → 𝔽

𝖥𝗈𝗅𝖽( f, α1, …, αk)

α1, …, αk ← 𝔽αi

ĥi

gClaimed to be 
same polynomial

 is over a domain of 
size 

g
n
2

≥
n
2k

Makes  queries to t f

(ŵ1, σ1), …, (ŵℓ, σℓ)Returns a list of claims on g

Domain shift

Folding  times by k 2



WHIR iteration

27

P V

f : L → 𝔽

𝖥𝗈𝗅𝖽( f, α1, …, αk)

α1, …, αk ← 𝔽αi

ĥi

gClaimed to be 
same polynomial

 is over a domain of 
size 

g
n
2

≥
n
2k

Makes  queries to t f

(ŵ1, σ1), …, (ŵℓ, σℓ)Returns a list of claims on g

Domain shift

Batching

(w*, σ*)

Folding  times by k 2



WHIR iteration

27

P V

f : L → 𝔽

𝖥𝗈𝗅𝖽( f, α1, …, αk)

α1, …, αk ← 𝔽αi

ĥi

gClaimed to be 
same polynomial

 is over a domain of 
size 

g
n
2

≥
n
2k

Makes  queries to t f

(ŵ1, σ1), …, (ŵℓ, σℓ)Returns a list of claims on g

Domain shift

Batching

(w*, σ*)

Folding  times by k 2

Recurse g ∈ 𝖢𝖱𝖲 [ n
2

, m − k, ρ′ := 21−k ⋅ ρ, ŵ*, σ*] As in STIR, rate 
improves!



WHIR iteration

27

P V

f : L → 𝔽

𝖥𝗈𝗅𝖽( f, α1, …, αk)

α1, …, αk ← 𝔽αi

ĥi

gClaimed to be 
same polynomial

 is over a domain of 
size 

g
n
2

≥
n
2k

Makes  queries to t f

(ŵ1, σ1), …, (ŵℓ, σℓ)Returns a list of claims on g

Domain shift

Batching

(w*, σ*)

Folding  times by k 2

Recurse g ∈ 𝖢𝖱𝖲 [ n
2

, m − k, ρ′ := 21−k ⋅ ρ, ŵ*, σ*] As in STIR, rate 
improves!

Similar structure to STIR! 
Multilinear structure 

forbids using quotients: 
we need new ideas to 

domain shift!



Domain shifting

28



Domain shifting
f : L → 𝔽

28

Claim on : f (ŵ, σ)



Domain shifting
f : L → 𝔽 g : L* → 𝔽

28

Claim on : f (ŵ, σ)



Domain shifting
f : L → 𝔽 g : L* → 𝔽

28

Claim on : f (ŵ, σ) Output claims on :g
(ŵ1, σ1), …, (ŵℓ, σℓ)



Domain shifting

 and  claimed to be evaluations of same polynomial. Want to output claims on .f g g

Goal: If  is -far from , w.h.p.  is -far from  for at 

least one 

f (1 − ρ) 𝖢𝖱𝖲[ |L | , m, ρ, ŵ, σ] g (1 − ρ′ ) 𝖢𝖱𝖲[ |L* | , m, ρ′ , ŵi, σi]

i ∈ [ℓ]

f : L → 𝔽 g : L* → 𝔽

28

Claim on : f (ŵ, σ) Output claims on :g
(ŵ1, σ1), …, (ŵℓ, σℓ)



Domain shifting

 and  claimed to be evaluations of same polynomial. Want to output claims on .f g g

Goal: If  is -far from , w.h.p.  is -far from  for at 

least one 

f (1 − ρ) 𝖢𝖱𝖲[ |L | , m, ρ, ŵ, σ] g (1 − ρ′ ) 𝖢𝖱𝖲[ |L* | , m, ρ′ , ŵi, σi]

i ∈ [ℓ]

Assume there is unique polynomial  that is -close to .̂p (1 − ρ′ ) g

f : L → 𝔽 g : L* → 𝔽

28

OOD subprotocol (next)

Claim on : f (ŵ, σ) Output claims on :g
(ŵ1, σ1), …, (ŵℓ, σℓ)



Domain shifting

 and  claimed to be evaluations of same polynomial. Want to output claims on .f g g

Goal: If  is -far from , w.h.p.  is -far from  for at 

least one 

f (1 − ρ) 𝖢𝖱𝖲[ |L | , m, ρ, ŵ, σ] g (1 − ρ′ ) 𝖢𝖱𝖲[ |L* | , m, ρ′ , ŵi, σi]

i ∈ [ℓ]

Assume there is unique polynomial  that is -close to .̂p (1 − ρ′ ) g

Then, if  satisfies the -constraint  must be be -far from it.̂p (ŵ, σ) f (1 − ρ)

f : L → 𝔽 g : L* → 𝔽

28

OOD subprotocol (next)

Claim on : f (ŵ, σ) Output claims on :g
(ŵ1, σ1), …, (ŵℓ, σℓ)



Domain shifting

 and  claimed to be evaluations of same polynomial. Want to output claims on .f g g

Goal: If  is -far from , w.h.p.  is -far from  for at 

least one 

f (1 − ρ) 𝖢𝖱𝖲[ |L | , m, ρ, ŵ, σ] g (1 − ρ′ ) 𝖢𝖱𝖲[ |L* | , m, ρ′ , ŵi, σi]

i ∈ [ℓ]

Assume there is unique polynomial  that is -close to .̂p (1 − ρ′ ) g

Then, if  satisfies the -constraint  must be be -far from it.̂p (ŵ, σ) f (1 − ρ)

f : L → 𝔽 g : L* → 𝔽
y

z

28

OOD subprotocol (next)

Claim on : f (ŵ, σ) Output claims on :g
(ŵ1, σ1), …, (ŵℓ, σℓ)



Domain shifting

 and  claimed to be evaluations of same polynomial. Want to output claims on .f g g

Goal: If  is -far from , w.h.p.  is -far from  for at 

least one 

f (1 − ρ) 𝖢𝖱𝖲[ |L | , m, ρ, ŵ, σ] g (1 − ρ′ ) 𝖢𝖱𝖲[ |L* | , m, ρ′ , ŵi, σi]

i ∈ [ℓ]

Assume there is unique polynomial  that is -close to .̂p (1 − ρ′ ) g

Then, if  satisfies the -constraint  must be be -far from it.̂p (ŵ, σ) f (1 − ρ)
New constraints: (i) original constraint  (ii)  for some random point . (ŵ, σ) ̂p(z) = y z

f : L → 𝔽 g : L* → 𝔽
y

z

28

OOD subprotocol (next)

Claim on : f (ŵ, σ) Output claims on :g
(ŵ1, σ1), …, (ŵℓ, σℓ)

Just an evaluation constraint which we 
know how to handle!



Domain shifting

 and  claimed to be evaluations of same polynomial. Want to output claims on .f g g

Goal: If  is -far from , w.h.p.  is -far from  for at 

least one 

f (1 − ρ) 𝖢𝖱𝖲[ |L | , m, ρ, ŵ, σ] g (1 − ρ′ ) 𝖢𝖱𝖲[ |L* | , m, ρ′ , ŵi, σi]

i ∈ [ℓ]

Assume there is unique polynomial  that is -close to .̂p (1 − ρ′ ) g

Then, if  satisfies the -constraint  must be be -far from it.̂p (ŵ, σ) f (1 − ρ)
New constraints: (i) original constraint  (ii)  for some random point . (ŵ, σ) ̂p(z) = y z

So, except with probability ,  is -far from .ρ g (1 − ρ′ ) 𝖢𝖱𝖲[ |L* | , m, ρ′ , (ŵ1, σ1), …, (ŵℓ, σℓ)]

f : L → 𝔽 g : L* → 𝔽
y

z

28

OOD subprotocol (next)

Claim on : f (ŵ, σ) Output claims on :g
(ŵ1, σ1), …, (ŵℓ, σℓ)

Just an evaluation constraint which we 
know how to handle!

Can amplify to ρt



Out Of Domain
Subprotocol to force unique 

29



Out Of Domain
Subprotocol to force unique 

P V

29



Out Of Domain
Subprotocol to force unique 

P Vg : L* → 𝔽

29



Out Of Domain
Subprotocol to force unique 

P Vg : L* → 𝔽

g

29



Out Of Domain
Subprotocol to force unique 

P Vg : L* → 𝔽

g
δ*

Λ(𝒞, g, δ*)

29



Out Of Domain
Subprotocol to force unique 

P Vg : L* → 𝔽

g
δ*

Λ(𝒞, g, δ*)

29



Out Of Domain
Subprotocol to force unique 

P Vg : L* → 𝔽

g
δ*

Λ(𝒞, g, δ*)

29



Out Of Domain
Subprotocol to force unique 

P Vg : L* → 𝔽

g
δ*

Λ(𝒞, g, δ*)

29



Out Of Domain
Subprotocol to force unique 

P Vg : L* → 𝔽

g
δ*

Λ(𝒞, g, δ*)

29

By Johnson bound, this 
is small



Out Of Domain
Subprotocol to force unique 

P Vg : L* → 𝔽

g
r ← 𝔽

β ∈ 𝔽 δ*

Λ(𝒞, g, δ*)

29

By Johnson bound, this 
is small



Out Of Domain
Subprotocol to force unique 

P Vg : L* → 𝔽

g
r ← 𝔽

β ∈ 𝔽 δ*

Λ(𝒞, g, δ*)

• By fundamental theorem of algebra of w.h.p. 
no pair  with 


• Prover "chooses" which codeword  it 
"commits" to

̂u, ̂v ̂u(r) = ̂v(r)

̂u

29

By Johnson bound, this 
is small



Out Of Domain
Subprotocol to force unique 

P Vg : L* → 𝔽

g
r ← 𝔽

β ∈ 𝔽 δ*

Λ(𝒞, g, δ*)

• By fundamental theorem of algebra of w.h.p. 
no pair  with 


• Prover "chooses" which codeword  it 
"commits" to

̂u, ̂v ̂u(r) = ̂v(r)

̂u

29

By Johnson bound, this 
is small



Out Of Domain
Subprotocol to force unique 

P Vg : L* → 𝔽

g
r ← 𝔽

β ∈ 𝔽 δ*

Λ(𝒞, g, δ*)

• By fundamental theorem of algebra of w.h.p. 
no pair  with 


• Prover "chooses" which codeword  it 
"commits" to

̂u, ̂v ̂u(r) = ̂v(r)

̂u

Add to list of constraints to enforce!
29

By Johnson bound, this 
is small



Batching
Pick your favourite sumcheck batching

30



Batching
Pick your favourite sumcheck batching

30

g : L → 𝔽 Sumcheck claims on :g
(ŵ1, σ1), …, (ŵℓ, σℓ)



Batching
Pick your favourite sumcheck batching

30

g : L → 𝔽 Sumcheck claims on :g
(ŵ1, σ1), …, (ŵℓ, σℓ)

Batching



Batching
Pick your favourite sumcheck batching

30

g : L → 𝔽 Sumcheck claims on :g
(ŵ1, σ1), …, (ŵℓ, σℓ)

Batching

g : L → 𝔽
Sumcheck claim on : g (ŵ*, σ*)



Batching
Pick your favourite sumcheck batching

30

g : L → 𝔽 Sumcheck claims on :g
(ŵ1, σ1), …, (ŵℓ, σℓ)

Batching

g : L → 𝔽
Sumcheck claim on : g (ŵ*, σ*)

Many ways this can be done: we chose random linear combination.



WHIR 🌪

31



WHIR 🌪

31

f : L → 𝔽

P V α1, …, αk ← 𝔽αi

𝖥𝗈𝗅𝖽( f, α1, …, αk)

ĥi



WHIR 🌪

31

g

f : L → 𝔽

P V α1, …, αk ← 𝔽αi

𝖥𝗈𝗅𝖽( f, α1, …, αk)

ĥi



WHIR 🌪

31

g
OOD

r
β

f : L → 𝔽

P V α1, …, αk ← 𝔽αi

𝖥𝗈𝗅𝖽( f, α1, …, αk)

ĥi



WHIR 🌪

31

g

Domain shift

OOD
r
β

f : L → 𝔽

P V α1, …, αk ← 𝔽αi

𝖥𝗈𝗅𝖽( f, α1, …, αk)

ĥi



WHIR 🌪

31

g

Domain shift

Batching

OOD
r
β

f : L → 𝔽

P V α1, …, αk ← 𝔽αi

𝖥𝗈𝗅𝖽( f, α1, …, αk)

ĥi



WHIR 🌪

31

g

Domain shift

Recurse g ∈ 𝖢𝖱𝖲 [ n
2

, m − k, ρ′ := 21−k ⋅ ρ, ŵ*, σ*]

Batching

OOD
r
β

f : L → 𝔽

P V α1, …, αk ← 𝔽αi

𝖥𝗈𝗅𝖽( f, α1, …, αk)

ĥi



Application: Σ-IOP
High soundness compilation using constrained codes

32



Application: Σ-IOP
High soundness compilation using constrained codes

Σ-IOP

32



Application: Σ-IOP
High soundness compilation using constrained codes

𝖯Σ𝖨𝖮𝖯 𝖵Σ𝖨𝖮𝖯

Σ-IOP

32



̂p

Application: Σ-IOP
High soundness compilation using constrained codes

𝖯Σ𝖨𝖮𝖯 𝖵Σ𝖨𝖮𝖯

Σ-IOP

32



̂q

̂p

Application: Σ-IOP
High soundness compilation using constrained codes

𝖯Σ𝖨𝖮𝖯 𝖵Σ𝖨𝖮𝖯

Σ-IOP

32



̂q

̂p

Application: Σ-IOP
High soundness compilation using constrained codes

𝖯Σ𝖨𝖮𝖯 𝖵Σ𝖨𝖮𝖯

Σ-IOP

Verifier can ask sumcheck queries 

i.e. send  and receive ŵ ∑
b

ŵ( ̂f(b), b)
32

Generalizes univariate and 
multilinear PIOPs at no extra cost!



̂q

̂p

Application: Σ-IOP
High soundness compilation using constrained codes

𝖯Σ𝖨𝖮𝖯 𝖵Σ𝖨𝖮𝖯

Σ-IOP

Verifier can ask sumcheck queries 

i.e. send  and receive ŵ ∑
b

ŵ( ̂f(b), b)
32

Generalizes univariate and 
multilinear PIOPs at no extra cost!



̂q

̂p

Application: Σ-IOP
High soundness compilation using constrained codes

𝖯Σ𝖨𝖮𝖯 𝖵Σ𝖨𝖮𝖯

Σ-IOP

Verifier can ask sumcheck queries 

i.e. send  and receive ŵ ∑
b

ŵ( ̂f(b), b)
32

Generalizes univariate and 
multilinear PIOPs at no extra cost!



̂q

̂p

Application: Σ-IOP
High soundness compilation using constrained codes

𝖯Σ𝖨𝖮𝖯 𝖵Σ𝖨𝖮𝖯

Σ-IOP

Verifier can ask sumcheck queries 

i.e. send  and receive ŵ ∑
b

ŵ( ̂f(b), b)
32

Generalizes univariate and 
multilinear PIOPs at no extra cost!



̂q

̂p

Application: Σ-IOP
High soundness compilation using constrained codes

𝖯Σ𝖨𝖮𝖯 𝖵Σ𝖨𝖮𝖯

Σ-IOP

Verifier can ask sumcheck queries 

i.e. send  and receive ŵ ∑
b

ŵ( ̂f(b), b)
32

Generalizes univariate and 
multilinear PIOPs at no extra cost!



̂q

̂p

Application: Σ-IOP
High soundness compilation using constrained codes

𝖯Σ𝖨𝖮𝖯 𝖵Σ𝖨𝖮𝖯

Σ-IOP

Verifier can ask sumcheck queries 

i.e. send  and receive ŵ ∑
b

ŵ( ̂f(b), b)

P V

32

Generalizes univariate and 
multilinear PIOPs at no extra cost!



̂q

̂p

Application: Σ-IOP
High soundness compilation using constrained codes

𝖯Σ𝖨𝖮𝖯 𝖵Σ𝖨𝖮𝖯

Σ-IOP

Verifier can ask sumcheck queries 

i.e. send  and receive ŵ ∑
b

ŵ( ̂f(b), b)

𝖯Σ𝖨𝖮𝖯

̂p

P V

32

Generalizes univariate and 
multilinear PIOPs at no extra cost!



̂q

̂p

Application: Σ-IOP
High soundness compilation using constrained codes

𝖯Σ𝖨𝖮𝖯 𝖵Σ𝖨𝖮𝖯

Σ-IOP

Verifier can ask sumcheck queries 

i.e. send  and receive ŵ ∑
b

ŵ( ̂f(b), b)

𝖯Σ𝖨𝖮𝖯

̂p

P V
f : L → 𝔽

32

Generalizes univariate and 
multilinear PIOPs at no extra cost!



̂q

̂p

Application: Σ-IOP
High soundness compilation using constrained codes

𝖯Σ𝖨𝖮𝖯 𝖵Σ𝖨𝖮𝖯

Σ-IOP

Verifier can ask sumcheck queries 

i.e. send  and receive ŵ ∑
b

ŵ( ̂f(b), b)

𝖯Σ𝖨𝖮𝖯

̂p

P V
f : L → 𝔽

𝖵Σ𝖨𝖮𝖯ŵ

32

Generalizes univariate and 
multilinear PIOPs at no extra cost!



̂q

̂p

Application: Σ-IOP
High soundness compilation using constrained codes

𝖯Σ𝖨𝖮𝖯 𝖵Σ𝖨𝖮𝖯

Σ-IOP

Verifier can ask sumcheck queries 

i.e. send  and receive ŵ ∑
b

ŵ( ̂f(b), b)

𝖯Σ𝖨𝖮𝖯

̂p

P V
f : L → 𝔽

𝖵Σ𝖨𝖮𝖯ŵ
y ∈ 𝔽

32

Generalizes univariate and 
multilinear PIOPs at no extra cost!



̂q

̂p

Application: Σ-IOP
High soundness compilation using constrained codes

𝖯Σ𝖨𝖮𝖯 𝖵Σ𝖨𝖮𝖯

Σ-IOP

Verifier can ask sumcheck queries 

i.e. send  and receive ŵ ∑
b

ŵ( ̂f(b), b)

𝖯Σ𝖨𝖮𝖯

̂p

P V
f : L → 𝔽

𝖵Σ𝖨𝖮𝖯ŵ
y ∈ 𝔽

Constrained (batched) Reed—Solomon proximity 
test on f

32

Generalizes univariate and 
multilinear PIOPs at no extra cost!



̂q

̂p

Application: Σ-IOP
High soundness compilation using constrained codes

𝖯Σ𝖨𝖮𝖯 𝖵Σ𝖨𝖮𝖯

Σ-IOP

Verifier can ask sumcheck queries 

i.e. send  and receive ŵ ∑
b

ŵ( ̂f(b), b)

𝖯Σ𝖨𝖮𝖯

̂p

P V
f : L → 𝔽

𝖵Σ𝖨𝖮𝖯ŵ
y ∈ 𝔽

Constrained (batched) Reed—Solomon proximity 
test on f

32

Generalizes univariate and 
multilinear PIOPs at no extra cost!

Q: Can we use this to do more 
efficient arithmetizations?



Review: FRI iteration

33



Review: FRI iteration

33

f : L → 𝔽

P V



Review: FRI iteration

33

f : L → 𝔽

P V α ← 𝔽α



𝖥𝗈𝗅𝖽( f, α)

Review: FRI iteration

33

f : L → 𝔽

P V α ← 𝔽α



𝖥𝗈𝗅𝖽( f, α)

Review: FRI iteration

33

f : L → 𝔽

P V α ← 𝔽α

f′ 



𝖥𝗈𝗅𝖽( f, α)

Review: FRI iteration

33

f : L → 𝔽

P V α ← 𝔽α

f′ 

Claimed to be 
same polynomial



𝖥𝗈𝗅𝖽( f, α)

Review: FRI iteration

33

f : L → 𝔽

P V α ← 𝔽α

f′ 

Claimed to be 
same polynomial

Check that 
 at 

 points in 
𝖥𝗈𝗅𝖽( f, α)(z) = f′ (z)

t L2k



𝖥𝗈𝗅𝖽( f, α)

Review: FRI iteration

33

f : L → 𝔽

P V α ← 𝔽α

f′ 

Claimed to be 
same polynomial

Check that 
 at 

 points in 
𝖥𝗈𝗅𝖽( f, α)(z) = f′ (z)

t L2k

Recurse on  f′ ∈ 𝖱𝖲 [ n
2k

, m − k, ρ]



𝖥𝗈𝗅𝖽( f, α)

Review: FRI iteration

33

f : L → 𝔽

P V α ← 𝔽α

f′ 

Claimed to be 
same polynomial

Check that 
 at 

 points in 
𝖥𝗈𝗅𝖽( f, α)(z) = f′ (z)

t L2k

Disclaimer: in full FRI 
consistency checks are 
correlated between rounds. 

Recurse on  f′ ∈ 𝖱𝖲 [ n
2k

, m − k, ρ]



𝖥𝗈𝗅𝖽( f, α)

Review: FRI iteration

33

f : L → 𝔽

P V α ← 𝔽α

f′ 

Claimed to be 
same polynomial

Check that 
 at 

 points in 
𝖥𝗈𝗅𝖽( f, α)(z) = f′ (z)

t L2k

Disclaimer: in full FRI 
consistency checks are 
correlated between rounds. 

Recurse on  f′ ∈ 𝖱𝖲 [ n
2k

, m − k, ρ]

Suppose that . 


If  is -far from ,


 must be -far from 

f′ ∈ 𝖱𝖲[n/2k, m − k, ρ]

f δ 𝖱𝖲[n, m, ρ]

𝖥𝗈𝗅𝖽( f, α) δ
𝖱𝖲[n/2k, m − k, ρ]

Soundness:



𝖥𝗈𝗅𝖽( f, α)

Review: FRI iteration

33

f : L → 𝔽

P V α ← 𝔽α

f′ 

Claimed to be 
same polynomial

Check that 
 at 

 points in 
𝖥𝗈𝗅𝖽( f, α)(z) = f′ (z)

t L2k

Disclaimer: in full FRI 
consistency checks are 
correlated between rounds. 

Recurse on  f′ ∈ 𝖱𝖲 [ n
2k

, m − k, ρ]

Then,  and  differ on 
a -fraction. 


Soundness error is 

f′ 𝖥𝗈𝗅𝖽( f, α)
δ

(1 − δ)t

Suppose that . 


If  is -far from ,


 must be -far from 

f′ ∈ 𝖱𝖲[n/2k, m − k, ρ]

f δ 𝖱𝖲[n, m, ρ]

𝖥𝗈𝗅𝖽( f, α) δ
𝖱𝖲[n/2k, m − k, ρ]

Soundness:



𝖥𝗈𝗅𝖽( f, α)

Review: FRI iteration

33

f : L → 𝔽

P V α ← 𝔽α

f′ 

Claimed to be 
same polynomial

Check that 
 at 

 points in 
𝖥𝗈𝗅𝖽( f, α)(z) = f′ (z)

t L2k

Disclaimer: in full FRI 
consistency checks are 
correlated between rounds. 

Recurse on  f′ ∈ 𝖱𝖲 [ n
2k

, m − k, ρ]

Then,  and  differ on 
a -fraction. 


Soundness error is 

f′ 𝖥𝗈𝗅𝖽( f, α)
δ

(1 − δ)t

Suppose that . 


If  is -far from ,


 must be -far from 

f′ ∈ 𝖱𝖲[n/2k, m − k, ρ]

f δ 𝖱𝖲[n, m, ρ]

𝖥𝗈𝗅𝖽( f, α) δ
𝖱𝖲[n/2k, m − k, ρ]

Soundness:

To get soundness error : 

set  and 

ε𝖱𝖡𝖱 ≤ 2−λ

δ := 1 − ρ t :=
λ

−log ρ


