WHIR !

Proximity testing for Reed-Solomon+

Gal Arnon Giacomo Fenzi
=PrL
Alessandro Chiesa Eylon Yogev

=pPEL Ny

Motivation

SNARKSs

Succinct Non-interactive Arguments of Knowledge

SNARKSs

Succinct Non-interactive Arguments of Knowledge

« Want to show “knowledge” of w s.t. (x,w) € R

SNARKSs

Succinct Non-interactive Arguments of Knowledge

e.g. R = {(x,w) : SHA3(w) = x}

« Want to show “knowledge” of w s.t. (x,w) € R

SNARKSs

Succinct Non-interactive Arguments of Knowledge

e \Want to show “knOW|edge” of w s.t. (x, W) c R e.g. R := {(x,w) : SHA3(w) = x}

SNARKSs

Succinct Non-interactive Arguments of Knowledge

e \Want to show “knOW|edge” of w s.t. (x, W) c R e.g. R := {(x,w) : SHA3(w) = x}

SNARKSs

Succinct Non-interactive Arguments of Knowledge

e \Want to show “knOW|edge” of w s.t. (x, W) c R e.g. R := {(x,w) : SHA3(w) = x}

SNARKSs

Succinct Non-interactive Arguments of Knowledge

e \Want to show “knOW|edge” of w s.t. (x, W) c R e.g. R := {(x,w) : SHA3(w) = x}

* Need* to add a random oracle.

P T

0/1

SNARKSs

Succinct Non-interactive Arguments of Knowledge

e \Want to show “knOW|edge” of w s.t. (x, W) c R e.g. R := {(x,w) : SHA3(w) = x}

* Need* to add a random oracle.
* Can be based on many
computational assumptions.

| T

0/1

SNARKSs

Succinct Non-interactive Arguments of Knowledge

» Want to show “knowledge” of w s.t. (x,w) € R o1 o) oA - Y
* Need* to add a random oracle.
f
* Can be based on many
computational assumptions.
 Today: we limit ourselves to
pure ROM SNARKSs P T

0/1

SNARKSs

Succinct Non-interactive Arguments of Knowledge

e \Want to show “knOW|edge” of w s.t. (x, W) c R e.g. R := {(x,w) : SHA3(w) = x}

* Need* to add a random oracle.

f
* Can be based on many
computational assumptions.
 Today: we limit ourselves to
pure ROM SNARKSs P T

e Wil call these hash-based
SNARKS.

0/1

Hash-based SNARKs

In practice

Hash-based SNARKs

In practice

Instantiating random oracle gives amazing SNARKSs:

Hash-based SNARKs

In practice

Instantiating random oracle gives amazing SNARKSs:

 Transparent setup (choice of hash)

Hash-based SNARKs

In practice

Instantiating random oracle gives amazing SNARKSs:
 Transparent setup (choice of hash)

* Highly efficient implementations (no public-key crypto)

Hash-based SNARKs

In practice

Instantiating random oracle gives amazing SNARKSs:
 Transparent setup (choice of hash)
* Highly efficient implementations (no public-key crypto)

* Plausibly post-quantum secure (secure in QROM)

Hash-based SNARKs

In practice

Instantiating random oracle gives amazing SNARKSs:

 Transparent setup (choice of hash)

* Highly efficient implementations (no public-key crypto)
* Plausibly post-quantum secure (secure in QROM)

Used to secure billions of dollars in real-world blockchains:

riash-based SNARKs Lol L. @

In practice _

Instantiating random oracle gives amazing SNARKS: oo | (cem|

* Transparent setup (choice of hash) - " (| /
'/\ O . /QE(. 0

* Highly efficient implementations (no public-key crypto)
* Plausibly post-quantum secure (secure in QROM)

Used to secure billions of dollars in real-world blockchains:

€» STARKWARE S pol Ilrreducible
polygon
4 zkSync dYdY/

PR > Succinct

m Matter l
NN, ZERO And many more...

4

Constructing SNARKSs

IBCS16] Construction

Constructing SNARKSs

IBCS16] Construction
g OP A

Constructing SNARKSs

IBCS16] Construction

g OP A

Constructing SNARKSs

IBCS16] Construction
g OP A

N -

Constructing SNARKSs

IBCS16] Construction
g OP A

N -

Constructing SNARKSs

IBCS16] Construction
g OP A

N -
|_>

- B

Constructing SNARKSs

IBCS16] Construction

g OP A

rlbrrrl

Constructing SNARKSs

IBCS16] Construction

g OP A

rlbrrrl

Constructing SNARKSs

IBCS16] Construction
g OP A

H
TLl'ITT

Constructing SNARKSs

IBCS16] Construction
g OP A

H
TLl'ITT

Constructing SNARKSs

IBCS16] Construction
g OP A
N -

-
-

_)

Constructing SNARKSs

IBCS16] Construction
g OP A
N -

-
-

_)

Constructing SNARKSs

IBCS16] Construction

-

IOP

M

~

N

-0
Vv
-

|_>

J

BCS

>

Constructing SNARKSs

IBCS16] Construction
g OP A
N -

-
-

_)

BCS

>

Constructing SNARKSs

IBCS16] Construction

g OP A
N - BCS
-)
TR
I_>
_ Y,

Proof length | & O(n)

Queries g ~ O(log n)

Constructing SNARKSs

IBCS16] Construction

g OP A
N - BCS
-)
TR
I_>
_ Y,

Proof length | ~ O(n)
Queries q ~ O(log n)

Constructing SNARKSs

IBCS16] Construction

g OP A
N - BCS
-)
TR
I_>
_ Y,

Proof length | ~ O(n)
Queries q ~ O(log n)

Argument size O(A - q - log 1)

Constructing SNARKSs

IBCS16] Construction

g OP A
N - BCS
-)
TR
I_>
_ Y,

Proof length | ~ O(n)
Queries q ~ O(log n)

Argument size O(A - q - log 1)

Small, tens of KiB

In this talk, we focus on the IOP!

Constructing SNARKSs

IBCS16] Construction

g OP A
N - BCS
-)
TR
|_>
_ Y,

Proof length | ~ O(n)
Queries q ~ O(log n)

Argument size O(A - q - log 1)

Small, tens of KiB

Constructing IOPs

Traditionally

Constructing IOPs

Traditionally
-

PIOP A

Constructing IOPs

Traditionally
g PIOP A
_ Y,

Just like IOPs, but prover is forced
to send polynomials F<¢[X].

E.g. Aurora, STARK PIOP etc.

Constructing IOPs

Traditionally
-

PIOP A

_ J

Just like IOPs, but prover is forced
to send polynomials F<¢[X].

E.g. Aurora, STARK PIOP etc.

Constructing IOPs

Traditionally
g PIOP A
p
— -
@
_ Y,

Just like IOPs, but prover is forced
to send polynomials F<¢[X].

E.g. Aurora, STARK PIOP etc.

Constructing IOPs

Traditionally
g PIOP A
p
— -
@
q
— -
_ Y,

Just like IOPs, but prover is forced
to send polynomials F<¢[X].

E.g. Aurora, STARK PIOP etc.

Constructing IOPs

Traditionally
g PIOP A
p
— -
- R
q
— -
_ Y,

Just like IOPs, but prover is forced
to send polynomials F<¢[X].

E.g. Aurora, STARK PIOP etc.

Constructing IOPs

Traditionally
g PIOP A
p
B &
PPIOP) -~ VPIOP
q
— -
_ Y,

Just like IOPs, but prover is forced
to send polynomials F<¢[X].

E.g. Aurora, STARK PIOP etc.

Constructing IOPs

Traditionally

PIOP A

N -

P
.

_)

Just like IOPs, but prover is forced
to send polynomials F<¢[X].

E.g. Aurora, STARK PIOP etc.

Strategy: use Reed-Solomon codes as

COnStrUCting |JOPs “redundant” encoding. Use a proximity

Traditionally test to check claims on encoded oracles.

PIOP A

p
N -

|_>

_)

Just like IOPs, but prover is forced
to send polynomials F<¢[X].

E.g. Aurora, STARK PIOP etc.

Strategy: use Reed-Solomon codes as

COnStrUCting |JOPs “redundant” encoding. Use a proximity

Traditionally test to check claims on encoded oracles.

PIOP A

p
o -
- *

_)

Just like IOPs, but prover is forced
to send polynomials F<¢[X].

E.g. Aurora, STARK PIOP etc.

Strategy: use Reed-Solomon codes as

COnStrUCting |JOPs “redundant” encoding. Use a proximity

Traditionally test to check claims on encoded oracles.

PIOP A p ‘ v

p
o -
- *

_)

Just like IOPs, but prover is forced
to send polynomials F<¢[X]. k) K)

E.g. Aurora, STARK PIOP etc.

Strategy: use Reed-Solomon codes as

COnStrUCting |JOPs “redundant” encoding. Use a proximity

Traditionally test to check claims on encoded oracles.

PIOP A p ‘ v

P p
- »
- *

_)

Just like IOPs, but prover is forced
to send polynomials F<¢[X]. k) K)

E.g. Aurora, STARK PIOP etc.

Strategy: use Reed-Solomon codes as

COnStrUCting |JOPs “redundant” encoding. Use a proximity

Traditionally test to check claims on encoded oracles.

PIOP A p ‘ v

fiL—->TF

- p» = -
- *

_)

p

Just like IOPs, but prover is forced
to send polynomials F<¢[X]. k) K)

E.g. Aurora, STARK PIOP etc.

Strategy: use Reed-Solomon codes as

COnStrUCting |JOPs “redundant” encoding. Use a proximity

Traditionally test to check claims on encoded oracles.

PIOP A p ‘ v

fiL—->TF

p
E > 4| |_>
ZE I
| * <

_ J

p

Just like IOPs, but prover is forced
to send polynomials F<¢[X]. k) K)

E.g. Aurora, STARK PIOP etc.

Strategy: use Reed-Solomon codes as

COnStrUCting |JOPs “redundant” encoding. Use a proximity

Traditionally test to check claims on encoded oracles.

PIOP A p ‘ v

P p
.:I_’ > 4| |_,
zeF
- * <
y € I

_ J

Just like IOPs, but prover is forced
to send polynomials F<¢[X]. k) K)

E.g. Aurora, STARK PIOP etc.

Strategy: use Reed-Solomon codes as
“redundant” encoding. Use a proximity

Constructing IOPs

Traditionally test to check claims on encoded oracles.
g PIOP h b ‘ v
p fiL—TF
o - . — -
A VPIOP >
y € I
- J Reed-Solomon Proximity Test on virtual function:
|) = J(x) =y
Just like IOPs, but prover is forced Jx) = Y — 2

to send polynomials F<¢[X].

E.g. Aurora, STARK PIOP etc.

Strategy: use Reed-Solomon codes as
“redundant” encoding. Use a proximity

Constructing IOPs

Traditionally test to check claims on encoded oracles.
g PIOP h b ‘ v
p fiL—TF
o - . — -
A VPIOP >
y € I
- J Reed-Solomon Proximity Test on virtual function:
|) = J(x) =y
Just like IOPs, but prover is forced %) = X — 7
to send polynomials F<¢[X].

E.g. Aurora, STARK PIOP etc. > 80 % of argument size from

6 proximity test!

|IOP of Proximity to RS codes

|IOP of Proximity to RS codes

RS|n, m, p| .=

|IOP of Proximity to RS codes Convenience

Evaluations of polynomials of degrezem< 2

n

RS|n, m, p| .=

on adomain L C [Fof size n. p :=

|JOP of Proximity to RS codes Convenience

Evaluations of polynomials of degrezem< 2

n

RS|n, m, p| .=

on adomain L C [Fof size n. p :=

Rate of the
code

|IOP of Proximity to RS codes Convenience

Evaluations of polynomials of degrezem< 2

n

RS|n, m, p| .=

on adomain L C [Fof size n. p :=

Rate of the
code

IOPP for RS

|JOP of Proximity to RS codes Convenience

Evaluations of polynomials of degrezem< 2

n

RS|n, m, p| .=

on adomain L C [Fof size n. p :=

Rate of the
code

IOPP for RS

|IOP of Proximity to RS codes Convenience

Evaluations of polynomials of degrezem< 2

n

RS|n, m, p| .=

on adomain L C [Fof size n. p :=

Rate of the
code

IOPP for RS

ﬂ{[ﬂjjjj}

-

|IOP of Proximity to RS codes Convenience

Evaluations of polynomials of degree < 2™

RSIn,m, p] - onadomain L C Fofsizen. p .= —
Rate of the &
code
IOPP for RS
f:L—->TF
[ITTTTIT]

|IOP of Proximity to RS codes Convenience

Evaluations of polynomials of degree < 2™

. S
RS[n, m,p] ' on adomain L C [Fof size n. p := —
Rate of the n
code
IOPP for RS : |ff e RS[n, m, p], V accepits.
fiL—F » If fis o-far from RS[n, m, p], V
[TTTTTTT] accepts w.p. €., < 27

{[Djjjj}
-

|IOP of Proximity to RS codes Convenience

Evaluations of polynomials of degree < 2™

RS|n,m, p| := 2™
Sln,m, p] on adomain L C Fofsizen. p := —
Rate of the "
code
IOPP for RS » If f € RS[n,m, p], V accepts.
f:L—>F e If fis o-far from RS[n, m, p], V
EEEEEEEE accepts w.p. €., < 27
\'}
| IIIIITTF .
« Goal: minimize queries to f and other

<

|IOP of Proximity to RS codes Convenience

Evaluations of polynomials of degree < 2™

RS|n, m, p] = _ 2"
(1, m, p] on adomain L C Fofsizen. p := —
Rate of the &
code
'OPP for RS » If f € RS[n,m, p], V accepts. —
round,
f:L—>TF e If fis o-far from RS[n,m,p|, V REMIECEN
) BCS
D]]]]]:l . accepts W.P. 8RBR S 2 transform.
\"
1Tk
« Goal: minimize queries to f and other

SEERENNEN proof oracles
<

Constrained RS tests

Constrained RS tests

What we are running:

Reed-Solomon Proximity Test on virtual function:

Jx) —y

S () =

X —Z

Constrained RS tests

What we are running: What we really want to show:

Reed-Solomon Proximity Test on virtual function: | have a polynomial f and a commitment to (an

Jx) —y

encoding of it) f such that

(x) := A
T f@) =y

X —Z

Constrained RS tests

What we are running: What we really want to show:

Reed-Solomon Proximity Test on virtual function: | have a polynomial f and a commitment to (an

Jx) —y

encoding of it) f such that

(x) := A
T f@) =y

X —Z

Break it down as:

Test for constrained encoding

Constrained RS tests

What we are running: What we really want to show:

Reed-Solomon Proximity Test on virtual function: | have a polynomial f and a commitment to (an

Jx) —y

encoding of it) f such that

(x) := A
T f@) =y

X —Z

Break it down as:

Test for constrained encoding

Jx) —y

X —Z

Quotient f'(x) :=

Constrained RS tests

What we are running: What we really want to show:

Reed-Solomon Proximity Test on virtual function: | have a polynomial f and a commitment to (an

Jx) —y

encoding of it) f such that

(x) := A
T f@) =y

X —Z

Break it down as:

Test for constrained encoding

Jx) —y Reed —Solomon
X—7Z proximity test for |’

Quotient f'(x) :=

Constrained RS tests

What we are running: What we really want to show:

Reed-Solomon Proximity Test on virtual function: | have a polynomial f and a commitment to (an

Jx) —y

encoding of it) f such that

(x) := A
Tt f@) =y

X —Z

Break it down as:

Test for constrained encoding We are designing a proximity
test just to check this
Jx) =y Reed —Solomon constraint.

Quotient f'(x) :=

X—7Z proximity test for |’

Constrained RS tests

What we are running: What we really want to show:

Reed-Solomon Proximity Test on virtual function: | have a polynomial f and a commitment to (an

Jx) —y

encoding of it) f such that

(x) := A
T f@) =y

X —Z

Break it down as:

Test for constrained encoding We are designing a proximity
test just to check this
Jx) =y Reed —Solomon constraint.

Quotient f'(x) :=

X —7z proximity test for f’ _
Can we move the constraint

directly into the IOPP?

Constrained RS codes

Constrained RS codes

RS[1. m. p] = { vaalu_atzi:ns of univariate }
felF~[X]onL

Constrained RS codes

RS[1. m. p] = { vaalu_atzi:ns of univariate}
felF~[X]onL

Constrained RS codes

RS[1. 1. p] = { vaalu_atzi:ns of univariate}
felF~[X]onL

Evaluations of multilinear

B { fe F<[X;,...,X JonL }

Constrained RS codes

RS[1. 1. p] = { vaalu_atzi:ns of univariate}
felF~[X]onL

Evaluations of multilinear

B { fe F<[X;,...,X JonL }

CRS[n,m, p,w, o] :

Constrained RS codes

RS[1. 1. p] = { vaalu_atzi:ns of univariate}
felF~[X]onL

Evaluations of multilinear

B { fe F<[X;,...,X JonL }

Constraint

CRS[n,m, p,w, o] :

Constrained RS codes

RS[1. m. p] = { vaalu_atzi:ns of univariate}
felF~[X]onL

feFsX,...X,lonL

{ Evaluations of multilinear }

Constraint Value of
constraint

CRS[n,m, p,w, o] :=

Constrained RS codes

Evaluations of univariate
RS[n,m,pl =1 . ..
felF~[X]onL
B Evaluations of multilinear
| fe F<[X;,...,X JonL
Constraint Value of

constraint

Evaluations of multilinear .
CRS[n,m,p,w,0] .= ~ : W(A(b),b) = o
p fE [_Sl[Xl, ,Xm] OnL bE{;,l}m

Constrained RS codes

Evaluations of univariate
RS[n,m,pl =1 . ..
felF~[X]onL
B Evaluations of multilinear
| fe F<[X;,...,X JonL
Constraint Value of

constraint

Evaluations of multilinear .
CRS[n,m,p,w,0] .= ~ : W(A(b),b) = o
p fE [_Sl[Xl, ,Xm] OnL bE{;,l}m

Constrained RS codes

RS|n, m, p] :

{ Evaluations of univariate }
feF?[X]onL

Evaluations of multilinear

f e L-Sl[Xl,X]onL
Constraint Value of
constraint

CRS[1. m. p. . 0] 1= { Evaluations of multiinear S e = o }

fersx, ...,X,lonL = .o

If w = Z - eq(X, r) we recover
multilinear polynomial evaluation

Our results

k > 1 is a folding

parameter

WHIR ‘!

A constrained Reed-Solomon proximity test

11

k > 1 is a folding

WHIR \5 parameter

A constrained Reed-Solomon proximity test

11

k > 1 is a folding

WHIR \’ parameter

A constrained Reed-Solomon proximity test

11

k > 1 is a folding

WHIR \’ parameter

A constrained Reed-Solomon proximity test

11

k > 1 is a folding

WHIR \’ parameter

A constrained Reed-Solomon proximity test

11

Comparison with prior work

Queries Verifier Time Alphabet
BaseFold qer = O - m) 0(@q..) F
A k
i s = O (Z | m) OG- 2 F
A ky 12 0k Ok
STIR g = O P logm OG- 2°+A7 - 27) F
A ' .
WHIR Qe = O (; - logm O(G e * (2% + m)) F>

12

Comparison to STIR and FRI

A

FRI: 0(;'%)

Comparison to STIR and FRI

STIR & WHIR 07 -1ogn)

Comparison to STIR and FRI

STIR & WHIR 07 -1ogn)

* Drop-in replacement of FRI and STIR (when used for CRS|[F, m, p,0,0])

Comparison to STIR and FRI

STIR & WHIR 07 -1ogn)

* Drop-in replacement of FRI and STIR (when used for CRS|[F, m, p,0,0])

« Same benefits as STIR over FRI, and similar prover time.

13

Comparison to STIR and FRI

STIR & WHIR 07 -1ogn)

* Drop-in replacement of FRI and STIR (when used for CRS|[F, m, p,0,0])
« Same benefits as STIR over FRI, and similar prover time.

 Additionally, richer proximity tests means that:

13

Comparison to STIR and FRI

STIR & WHIR 07 -1ogn)

* Drop-in replacement of FRI and STIR (when used for CRS|[F, m, p,0,0])
« Same benefits as STIR over FRI, and similar prover time.
 Additionally, richer proximity tests means that:

 Can be used as a multilinear PCS (instead of BaseFold, FRI-Binius, etc)

13

Comparison to STIR and FRI

STIR & WHIR 07 -1ogn)

* Drop-in replacement of FRI and STIR (when used for CRS|[F, m, p,0,0])
« Same benefits as STIR over FRI, and similar prover time.
 Additionally, richer proximity tests means that:

 Can be used as a multilinear PCS (instead of BaseFold, FRI-Binius, etc)

e Can be used in compiler for 2-I0OP (extra slides)

13

Comparison to STIR and FRI

STIR & WHIR 07 -1ogn)

* Drop-in replacement of FRI and STIR (when used for CRS|[F, m, p,0,0])

« Same benefits as STIR over FRI, and similar prover time.

 Additionally, richer proximity tests means that:
e Can be used as a multilinear PCS (instead of BaseFold, FRI-Binius, etc)
e Can be used in compiler for 2-I0OP (extra slides)

* Further, super-fast verification (next)

13

Implementation

14

whir (pcs) 9§
Field: Goldilocks2 and MT: Blake3
Number of variables: 20, folding

Security level: 100 bits using ConjecturelList security and

initial_folding_pow_bits: @

Num_queries: 41, rate: 2"-2, pow_
Num_queries: 17, rate: 2"-5, pow_
Num_queries: 11, rate: 2"-8, pow_
Num_queries: 8, rate: 2"-11, pow_

final_queries: 6, final_rate: 2"-

00D commitment

00D sample

00D sample

qguery error: 85.0,
(x4) prox gaps: 99.
00D sample
guery error: 88.
(x4) prox gaps:
00D sample
guery error: 88.
(x4) prox gaps:
guery error: 84.

0000000000000 O

Prover time: 356.9ms
Proof size: 58.7 KiB
Verifier time: 342.8ps
Average hashes: 1.1k

factor: 4

bits: 18, ood_samples:
bits: 15, ood_samples:
bits: 12, ood_samples:
bits: 12, ood_samples:

query error: 82.0, combination:
(x4) prox gaps: 101.0, sumcheck:

combination:
@, sumcheck:

combination:
.0, sumcheck:

combination:
.0, sumcheck:

pow: 16.0

94.6, pow:

folding_pow:
folding_pow:
, folding_pow:
, folding_pow:
14, final_pow_bits: 16, final_folding_pow_bits: @

(x4) prox gaps: 103.0, sumcheck: 102.0, pow: 0.0

18.0

100.0, pow: 0.0

pow:
pow:

pow:
pow:

pow:
pow:

15.0
2.0

12.0
4.0

19 bits of PoW

6

Implementation

» Rust & implementation, available at WizardOfMenlo/whir

whir (pcs) 9§

Field: Goldilocks2 and MT: Blake3

Number of variables: 2@, folding factor: 4

Security level: 100 bits using ConjecturelList security and 19 bits of PoW
initial_folding_pow_bits: @

Num_queries: 41, rate: 2"-2, pow_bits: 18, ood_samples: folding_pow:
Num_queries: 17, rate: 2”-5, pow_bits: 15, ood_samples: folding_pow:
Num_queries: 11, rate: 2*-8, pow_bits: 12, ood_samples: 2, folding_pow:
Num_queries: 8, rate: 2*-11, pow_bits: 12, ood_samples: 2, folding_pow: 6
final_queries: 6, final_rate: 2"-14, final_pow_bits: 16, final_folding_pow_bits: @

00D commitment

(x4) prox gaps: 103.0, sumcheck: 102.0, pow: 0.0
00D sample

qguery error: 82.0, combination: 94.6, pow: 18.0
(x4) prox gaps: 101.0, sumcheck: 100.0, pow: 0.0
00D sample

query error: 85.08, combination: . pow: 15.0
(x4) prox gaps: 99.0, sumcheck: .0, pow: 2.0
00D sample

query error: 88.0, combination: .3, pow: 12.0
(x4) prox gaps: .0, sumcheck: .0, pow: 4.0
00D sample

qguery error: 88. combination: . pow:

(x4) prox gaps: .0, sumcheck: .0, pow:

guery error: 84. pow: 16.0

.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0

Prover time: 356.9ms
Proof size: 58.7 KiB
Verifier time: 342.8ps
Average hashes: 1.1k

14

https://github.com/WizardOfMenlo/whir
http://arkworks.rs

Implementation

» Rust & implementation, available at WizardOfMenlo/whir

 Arkworks as backend, (extension of) Goldilocks for benchmarks

whir (pcs) 9§

Field: Goldilocks2 and MT: Blake3

Number of variables: 2@, folding factor: 4

Security level: 100 bits using ConjecturelList security and 19 bits of PoW
initial_folding_pow_bits: @

Num_queries: 41, rate: 2"-2, pow_bits: 18, ood_samples: folding_pow:
Num_queries: 17, rate: 2”-5, pow_bits: 15, ood_samples: folding_pow:
Num_queries: 11, rate: 2*-8, pow_bits: 12, ood_samples: 2, folding_pow:
Num_queries: 8, rate: 2*-11, pow_bits: 12, ood_samples: 2, folding_pow: 6
final_queries: 6, final_rate: 2"-14, final_pow_bits: 16, final_folding_pow_bits: @

00D commitment

(x4) prox gaps: 103.0, sumcheck: 102.0, pow: 0.0
00D sample

qguery error: 82.0, combination: 94.6, pow: 18.0
(x4) prox gaps: 101.0, sumcheck: 100.0, pow: 0.0
00D sample

query error: 85.08, combination: . pow: 15.0
(x4) prox gaps: 99.0, sumcheck: .0, pow: 2.0
00D sample

query error: 88.0, combination: .3, pow: 12.0
(x4) prox gaps: .0, sumcheck: .0, pow: 4.0
00D sample

qguery error: 88. combination: . pow:

(x4) prox gaps: .0, sumcheck: .0, pow:

guery error: 84. pow: 16.0

.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0

Prover time: 356.9ms
Proof size: 58.7 KiB
Verifier time: 342.8ps
Average hashes: 1.1k

14

https://github.com/WizardOfMenlo/whir
http://arkworks.rs

Implementation

» Rust & implementation, available at WizardOfMenlo/whir

 Arkworks as backend, (extension of) Goldilocks for benchmarks

* Huge thanks to Remco Bloemen!!! i 609 3

Field: Goldilocks2 and MT: Blake3

Number of variables: 2@, folding factor: 4

Security level: 100 bits using ConjecturelList security 19 bits of PoW
initial_folding_pow_bits: @

Num_queries: 41, rate: 2"-2, pow_bits: 18, ood_samples: folding_pow:
Num_queries: 17, rate: 2”-5, pow_bits: 15, ood_samples: folding_pow:
Num_queries: 11, rate: 2*-8, pow_bits: 12, ood_samples: 2, folding_pow:
Num_queries: 8, rate: 2*-11, pow_bits: 12, ood_samples: 2, folding_pow: 6
final_queries: 6, final_rate: 2"-14, final_pow_bits: 16, final_folding_pow_bits: @

00D commitment

(x4) prox gaps: 103.0, sumcheck: 102.0, pow: 0.0
00D sample

qguery error: 82.0, combination: 94.6, pow: 18.0
(x4) prox gaps: 101.0, sumcheck: 100.0, pow: 0.0
00D sample

query error: 85.0, combination: 93. pow: 15.0
(x4) prox gaps: 99.0, sumcheck: 98.0, pow: 2.0
00D sample

query error: 88.0, combination: 92.3, pow: 12.0
(x4) prox gaps: .0, sumcheck: 96.0, pow: 4.0
00D sample

qguery error: 88. combination: 90. pow:

(x4) prox gaps: .0, sumcheck: 94.0, pow:

guery error: 84. pow: 16.0

.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0

Prover time: 356.9ms
Proof size: 58.7 KiB
Verifier time: 342.8ps
Average hashes: 1.1k

14

https://github.com/WizardOfMenlo/whir
http://arkworks.rs

Implementation

» Rust & implementation, available at WizardOfMenlo/whir

 Arkworks as backend, (extension of) Goldilocks for benchmarks

* Huge thanks to Remco Bloemen!!! i 609 3

Field: Goldilocks2 and MT: Blake3
Number of variables: 2@, folding factor: 4
Security level: 100 bits using ConjecturelList security and 19 bits of PoW

® We Com pared to FRI, STIR and BaseFOId_ ﬁﬂi{;ﬂiﬁiﬁd12?“’??{2“?'3 pow_bits: 18, ood_samples: 2, folding_pow:

Num_queries: 17, rate: 2”-5, pow_bits: 15, ood_samples: folding_pow:
Num_queries: 11, rate: 2*-8, pow_bits: 12, ood_samples: 2, folding_pow:
Num_queries: 8, rate: 2*-11, pow_bits: 12, ood_samples: 2, folding_pow: 6
final_queries: 6, final_rate: 2"-14, final_pow_bits: 16, final_folding_pow_bits: @

00D commitment

(x4) prox gaps: 103.0, sumcheck: 102.0, pow: 0.0
00D sample

qguery error: 82.0, combination: 94.6, pow: 18.0
(x4) prox gaps: 101.0, sumcheck: 100.0, pow: 0.0
00D sample

query error: 85.08, combination: . pow: 15.0
(x4) prox gaps: 99.0, sumcheck: .0, pow: 2.0
00D sample

query error: 88.0, combination: .3, pow: 12.0
(x4) prox gaps: .0, sumcheck: .0, pow: 4.0
00D sample

query error: 88. combination: . pow: 12.0
(x4) prox gaps: .0, sumcheck: .0, pow: 6.0
guery error: 84. pow: 16.0

.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0

Prover time: 356.9ms
Proof size: 58.7 KiB
Verifier time: 342.8ps
Average hashes: 1.1k

14

https://github.com/WizardOfMenlo/whir
http://arkworks.rs

Super fast verifier

Super fast verifier

 The WHIR verifier typically runs in a few hundred microseconds.

15

Super fast verifier

 The WHIR verifier typically runs in a few hundred microseconds.

* Other verifiers require several milliseconds (and more).

15

Super fast verifier

 The WHIR verifier typically runs in a few hundred microseconds.
* Other verifiers require several milliseconds (and more).

o Without compromising prover time & argument size

15

Super fast verifier

 The WHIR verifier typically runs in a few hundred microseconds.
* Other verifiers require several milliseconds (and more).

o Without compromising prover time & argument size

 As a PCS for degree 222100 bits of security:

15

Super fast verifier

 The WHIR verifier typically runs in a few hundred microseconds.
* Other verifiers require several milliseconds (and more).

* Without compromising prover time & argument size

 As a PCS for degree 222100 bits of security:

Prover time: ~1s (MacBook Air)
Commit & open: 63 KiB
I

Verifier time: 270 ps (0.27 ms)

Super fast verifier

 The WHIR verifier typically runs in a few hundred microseconds.
* Other verifiers require several milliseconds (and more).

o Without compromising prover time & argument size

e As a PCS for degree 224: Schemes with trusted
setup using pairings!

Verifier time (ms) | Brakedown | Ligero | Greyhound | Hyrax | PST | KZG | WHIR-1/2 | WHIR-1/16

A =100 3000 733 - 100 7.81 | 2.42 0.61 0.29
A =128 3680 750 130 151 9.92 | 3.66 1.4 0.6

Table 4: Comparison of WHIR-CB'’s verifier time versus other polynomial commitment schemes, on
24 variables. For the KZG degree 2?4 is used instead.

16

Comparison with BaseFold

8000 -

Size (KiB

BaseFold: *
WHIR-UD: A

WHIR-CB: A

6000 -
4000 -
2000 ~

Argument size

218 220 222 224 226
Degree

Verifier time

M

1 | |
218 220 222 224 226

Degree

Prover time

|
218 220

|
222

Degree

17

I I
924 226

Comparison with BaseFold

Argument size Verifier time

25 -

8000 - .

M n 20 -

"~ 6000 - S

< 15 -

@ 4000 - £ 10 -

@ 2000 - =

0 __h%— 0 - i | |
218 22() 222 224 226 218 22() 222 224 226
Degree Degree

Prover time

BaseFold: x 2
2% 1 Remark: BaseFold

WHIR-UD: A 5 2~ 1 - implementation is not
fully optimised
WHIR-CB: A T P

Degree

17

Comparison with FRI (and STIR)

128-bits security level.

A = 106 + 22 bits of PoW + “list-decoding” assumptions.

Comparison with FRI (and STIR)

128-bits security level.

A = 106 + 22 bits of PoW + “list-decoding” assumptions.

m =24, p=1/4 FRI WHIR

Size (KiB) 177 106

Verifier time 2.4ms /00ps

18

Comparison with FRI (and STIR)

128-bits security level.

A = 106 + 22 bits of PoW + “list-decoding” assumptions.

m=24,p=1/4 FRI WHIR
Size (KiB) 177 106
Verifier time 2.4ms /00ps
d=30,p=1/2 FRI WHIR
Size (KiB) 494 187
Verifier time 4.4ms 1.3ms

18

Comparison with FRI (and STIR)

128-bits security level.

A = 106 + 22 bits of PoW + “list-decoding” assumptions.

m=24,p=1/4 FRI WHIR
Size (KiB) 177 106
Verifier time 2.4ms /00ps
d=30,p=1/2 FRI WHIR
Size (KiB) 494 187
Verifier time 4.4ms 1.3ms

Argument size

1 | | 1 1 | |
218 220 222 224 226 228 230

Degree

Prover time

1 1 1 1 1 1
218 220 222 224 226 228 230

Degree

18

= 1/2

Verifier hash complexity

10000 -
8000 -
6000 -

4000 -

2000 - MKH

T I I | 1 T I
218 220 222 224 226 228 230

Hashes

Degree

Verifier time

1 1 1 1 1 1
218 220 222 224 226 228 230

Figure 2: Comparison of FRI, STIR and WHIR for p = 1/2. FRI: x, STIR: e, WHIR-CB: A. Pro
time is displayed with logarithmic scaling.

Conclusion

Query complexity:

0, / 1)
—_— O m
' g

Verifier complexity:

O(QWHIR) (2k + m))

Query complexity:

0, / 1
—_— O m
' g

Verifier complexity:

O(QWHIR) (2k + m))

» State-of-the-art argument size and hash complexity

Query complexity:

0/11
— - logm
r g

Verifier complexity:

O(QWHIR) (2k + m))

» State-of-the-art argument size and hash complexity

» Fastest verification of any PCS (including trusted setups!)

Query complexity:

0/11
— - logm
r g

Verifier complexity:

O(QWHIR) (2k + m))

» State-of-the-art argument size and hash complexity

» Fastest verification of any PCS (including trusted setups!)
* Enables high-soundness compilation for Z-10P

.+

— IOP

Extra slides

Techniques

FRI & STIR Folding

Reduce RS|n, m, p] to RS[n/ 2K m —k, Pl

FRI & STIR Folding

Reduce RS|n, m, p] to RS[n/ 2K m —k, Pl

Unchanged!

FRI & STIR Folding

Reduce RS|n, m, p] to RS[n/ 2K m —k, Pl

f’ L N |]: Unchanged!
[T

FRI & STIR Folding

Reduce RS|n, m, p] to RS[n/ 2K m —k, Pl

f’ L N |]: Unchanged!
[T

- R——

FRI & STIR Folding

Reduce RS|n, m, p] to RS[n/ 2K m —k, Pl
f: L — |]: Unchanged!

Q
Q
Q
g
Q
Q
Q
Q
Q
Q
Q

WL Fold(f,)

23

FRI & STIR Folding

Reduce RS|n, m, p] to RS[n/ 2K m —k, Pl
f: L — |]: Unchanged!

Q
Q
Q
g
Q
Q
Q
Q
Q
Q
Q

A virtual function r.’ FOId(]C, a)

23

FRI & STIR Folding

Reduce RS|[#n, m, p] to RS|n/ 2K m —k, i]
(Think k = 4) fL—> -

Hl § NN
- R,

_>.IZIZIZI' Fold(f, a)

23

FRI & STIR Folding

Reduce RS|n, m, p] to RS[n/ 2K m —k, Pl
f: L — [F Unchanged!

Q
Q
Q
g
Q
Q
Q
Q
Q
Q
Q

A virtual function r.' FOId(]C, a)

How? Inspiration from FFTs, for k = 1:

Fold(f,a) =f ,+a-f, .
Can extend to every k that is a power of two.

23

Properties:

FRI & STIR Folding

Reduce RS|n, m, p] to RS[n/ 2K m —k, Pl
f: L — [F Unchanged!

A virtual function

How? Inspiration from FFTs, for k = 1:

Fold(f.a) :=f ,+a-f..

Can extend to every k that is a power of two.

23

Properties:

Local: compute Fold(f, @)(z) at any
point z € L* with 2% queries to f

FRI & STIR Folding

Reduce RS|n, m, p] to RS[n/ 2K m —k, Pl

Unchanged!

f:L—->TF

A virtual function

How? Inspiration from FFTs, for k = 1:

Fold(f.a) :=f ,+a-f..

Can extend to every k that is a power of two.

23

Properties:

Local: compute Fold(f, @)(z) at any
point z € L* with 2% queries to f

Distance preservation: if f is o-far from
RS[n, m, p], then w.h.p. Fold(f, &) remains
also o-far from RS[n/2%, m — k, p]

FRI & STIR Folding

Reduce RS|n, m, p] to RS[n/ 2K m —k, Pl

Unchanged!

f:L—->TF

Q
Q
Q
g
Q
Q
Q
Q
Q
Q
Q

A virtual function

How? Inspiration from FFTs, for k = 1:

Fold(f.a) :=f ,+a-f..

Can extend to every k that is a power of two.

23

Properties:

Local: compute Fold(f, @)(z) at any
point z € L* with 2% queries to f

Distance preservation: if f is o-far from
RS[n, m, p], then w.h.p. Fold(f, &) remains
also o-far from RS[n/2%, m — k, p]

oly(n,2™
poly(n), the
| [F]

Unless w.p. ~

fraction of “corrupted” entries does
not decrease.

FRI & STIR Folding

Reduce RS|n, m, p] to RS[n/ 2K m —k, Pl

f:L—->TF

Q
Q
Q
g
Q
Q
Q
Q
Q
Q
Q

A virtual function

How? Inspiration from FFTs, for k = 1:

Fold(f.a) :=f ,+a-f..

Can extend to every k that is a power of two.

Unchanged!

23

Properties:

Local: compute Fold(f, @)(z) at any
point z € L* with 2% queries to f

Distance preservation: if f is o-far from
RS[n, m, p], then w.h.p. Fold(f, &) remains
also o-far from RS[n/2%, m — k, p]

oly(n,2™
poly(n), the
| [F]

Unless w.p. ~

fraction of “corrupted” entries does
not decrease.

Proximity Gaps for Reed—Solomon Codes

Eli Ben-Sasson* Dan Carmon* Yuval Ishaif Swastik Kopparty *
Shubhangi Saraf®

July 3, 2021

Mutual correlated agreement

Test a random linear combination

Mutual correlated agreement

Test a random linear combination

Mutual correlated agreement

Test a random linear combination

Mutual correlated agreement

Test a random linear combination

r « "

fi i fri= ik

Mutual correlated agreement

Test a random linear combination
if w.h.p. A(f*,6) < o:

r « "

fi i fri= ik

Mutual correlated agreement

Test a random linear combination
if w.h.p. A(f*,6) < o:

r « "

fi i fri= ik

Mutual correlated agreement

Test a random linear combination
if w.h.p. A(f*,6) < o:

Agreement: then A(f,, €¢) < o.

r « "

fi i fri= ik

Mutual correlated agreement

Test a random linear combination
if w.h.p. A(f*,6) < o:

Agreement: then A(f,,) < 0.

r « "

fi i fri= ik

Mutual correlated agreement

Test a random linear combination
if w.h.p. A(f*,6) < o:

Agreement: then A(f,,) < 0.

Correlated agreement: then f,, ..., f,,
r « [agree with 6 on the same “stripe”

fi i fri= ik

24

Mutual correlated agreement

Test a random linear combination
if w.h.p. A(f*,6) < o:

Agreement: then A(f,, €¢) < o.

Correlated agreement: then f,, ..., f,,
r « " agree with € on the same “stripe”

fi i fri= ik

24

Mutual correlated agreement

Test a random linear combination
if w.h.p. A(f*,6) < o:

Agreement: then A(f,, €¢) < o.

Correlated agreement: then f,, ..., f,,
r « " agree with € on the same “stripe”

fi i fri= ik

24

Mutual correlated agreement

Test a random linear combination

r « "

J* = Z’”ifi

24

if w.h.p. A(f*,6) < o:
Agreement: then A(f,, €¢) < o.

Correlated agreement: then f;, ..., /..
agree with € on the same “stripe”

Mutual correlated agreement: the stripe
in which fi, ..., f,, agree with & is the
same on which f* does:

“No new correlated domains appear”

List-RLC lemma and List-Fold A(%.1.6) is the lst o

codewords of & that are o-close

Implied by mutual correlated agreement to f

25

List-RLC lemma and List-Fold A(%.1.6) is the lst o

codewords of & that are o-close

Implied by mutual correlated agreement to f

fiseeesfys L= F
@

25

List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of € that are o-close
Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

25

List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of € that are o-close
Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

25

List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of & that are o-close

Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

A(E, - ,0)

25

List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of & that are o-close

Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

A(E, - ,0)

25

List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of & that are o-close

Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

]ﬂ,...,fm:L—)J_ A(%m,,é)

A(E, - ,0)

25

List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of & that are o-close

Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

]ﬂ,...,fm:L—)J_ A(%m,,é)

A(E, - ,0)

25

List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of € that are o-close
Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

]ﬂ,...,fm:L—)J_ A(%m,,é)

A(E, - ,0)

25

List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of € that are o-close
Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

forsdui L= F pgm . g

 Random linear combination version: w.h.p. over r:

A@B, (f,r),5) = {(ur):ue AE"15)}

A(E, - ,0)

25

List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of € that are o-close
Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

]ﬂ,...,fm:L—l'J_ A(%m,,é)

® Random linear combination version: w.h.p. over r:

A@B, (f,r),5) = {(ur):ue AE"15)}

(-,r) (-,r) l * Folding version: w.h.p. over a:
A(8, Fold(f, @), §) = {Fold(u,) : u € A(%,f,6)}

A(E, - ,0)

25

List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of & that are o-close

Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

forsdui L= F pgm . g

 Random linear combination version: w.h.p. over r:

7 (B, (£.1),8) = {(u,r) : u € A(G".1,5))
< , I‘) < . l‘) l Folding version: w.h.p. over Q:
| A(E, Fold(f,), 5) = {Fold(u,) : u € A(G,f,5)}
® * Alternatively, each term in the |.h.s can be “explained"

A(E, - ,0) by terms in the r.h.s.

25

List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of & that are o-close

Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

forshi L= F A, g

 Random linear combination version: w.h.p. over r:

7 (B, (£.1),8) = {(u,r) : u € A(G".1,5))
< , I‘) < . l‘) l Folding version: w.h.p. over Q:
| A(E, Fold(f,), 5) = {Fold(u,) : u € A(G,f,5)}
® * Alternatively, each term in the |.h.s can be “explained"

A(E, - ,0) by terms in the r.h.s.

* We show correlated agreement implies mutual
correlated agreement in unique decoding.

25

List-RLC lemma and List-Fold A(%.1.6) is the lst o

codewords of & that are o-close

Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

fi,...,fm: LH J_ A(%m9.95)

 Random linear combination version: w.h.p. over r:

7 (B, (£.1),8) = {(u,r) : u € A(G".1,5))
< , I‘) < . l‘) l Folding version: w.h.p. over a:
’ A(E, Fold(f, @), 8) = {Fold(u, @) : u € A(%,f,5)}
® * Alternatively, each term in the I.h.s can be “explained”

A(G, - ,0) by terms in the r.h.s.

* We show correlated agreement implies mutual
Stronger than what is required correlated agreement in unique decoding.
for STIR’s soundness

25

List-RLC lemma and List-Fold A(%.1.6) is the lst o

codewords of € that are o-close

Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

fi,...,fm: LH J_ A(%m9.95)

 Random linear combination version: w.h.p. over r:

7 (B, (£.1),8) = {(u,r) : u € A(G".1,5))
< , I‘) < . l‘) l Folding version: w.h.p. over a:
’ A(E, Fold(f, @), 8) = {Fold(u, @) : u € A(%,f,5)}
® * Alternatively, each term in the I.h.s can be “explained”

A(G, - ,0) by terms in the r.h.s.

* We show correlated agreement implies mutual
Stronger than what is required correlated agreement in unique decoding.

for STIR’s soundness
Recent results show it holds up to 1.5 Johnson for

25 general linear codes!

WHIR Folding

Reduce CRS[n, m,p,w, o] to CRS[n/2.m -1, p,w 0]

26

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

WHIR Folding

Reduce CRS[n, m,p,w, o] to CRS[n/2.m -1, p,w 0]

26

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

WHIR Folding

Reduce CRS[n, m,p,w, o] to CRS[n/2.m -1, p,w 0]

f:L—>TF
Hl B EER

26

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

WHIR Folding

Reduce CRS[n, m,p,w, o] to CRS[n/2.m -1, p,w 0]

f:L—>TF
Hl B EER

hX):=) W(fX.b),X,b) p

be{0,1}"!
—_—mmm—
ﬂ

h(0) + h(1) =, o

26

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

WHIR Folding

Reduce CRS[n, m,p,w, o] to CRS[n/2.m -1, p,w 0]

f:L—-TF
hX):=) W(fX.b),X,b) A
be{0,1}! h
- J
4—

h(0) + h(1) =, o

26

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

WHIR Folding

Reduce CRS[n, m,p,w, o] to CRS[n/2.m -1, p,w 0]

f:L—>TF
aX):=) WJX.bLXb) 4
be{0,1}"! h

h(0) + h(1) =, o

J
L
J
J
)
)

26

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

WHIR Folding

Reduce CRS[n, m,p,w, o] to CRS[n/2.m -1, p,w 0]

f:L—>TF
MX)=) WFXbLXb) s
be (0,1} h

h(0) + h(1) =, o

J
L
J
J
)
)

Completeness: Z w(f(b),b) = o then: . . 1 Fold(f, a)
b

26

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

WHIR Folding

Reduce CRS[n, m,p,w, o] to CRS[n/2.m -1, p,w 0]

f:L—-TF
hX):=) W(fX.b),X,b) A
be{0,1}""! h
;O +h(1) =0
Completeness: Z w(f(b),b) = o then: . Wi Fold(f, o)
b

« h(0)+ h(l) = o,

26

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

WHIR Folding

Reduce CRS[n, m,p,w, o] to CRS[n/2.m -1, p,w 0]

f:L—-TF
hX):=) W(fX.b),X,b) A
be{0,1}""! h
;O +h(1) =0
Completeness: Z w(f(b),b) = o then: . Wi Fold(f, o)
b

« h(0)+ h(l) = o,
. D W(f(a,b),a.b) = h(a)
b

26

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

WHIR Folding

Reduce CRS[n, m,p,w, o] to CRS[n/2.m -1, p,w 0]

f:L—-TF
hX):=) W(fX.b),X,b) A
be{0,1}""! h
;O +h(1) =0
Completeness: Z w(f(b),b) = o then: . Wi Fold(f, o)
b

« h(0)+ h(l) = o,
. D W(f(a,b),a.b) = h(a)
b

. Fold(f, a) = fla, -)

26

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

WHIR Folding

Reduce CRS[n, m,p,w, o] to CRS[n/2.m -1, p,w 0]

f:L—>TF
hOO = Y WfbLXb) A
be{0,1}"! h

h(0) + h(1) =, o

J
L
J
J
)
)

Completeness: Z w(f(b),b) = o then: . : 1 Fold(f, o)
b
Soundness: by mutual correlated agreement,
* hO)+h(1) =0, wh.p. it A(f, CRS[n, m, p, W, 6]) > & then
. Z vAv(f(a, b), a, b) — iz(a) A(F0|d(f, a), CRS[Ifl/z,m — l,p, vAva, h(a)]) > 0
b

. Fold(f, a) = fla, -)

26

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

WHIR Folding

Reduce CRS[n, m,p,w, o] to CRS[n/2.m -1, p,w 0]

f:L—>TF
il B EER
i)=Y WAXbLXbD) 2
be{0,1}"!
S O+ k(1) =0
Completeness: Z w(f(b),b) = o then: . Wi Fold(f, o)
b
Soundness: by mutual correlated agreement,
+ 1(0) + (1) = o, w.h.p. if ACf,CRS[n, m, p, W, 5]) > & then
. Z vAv(f(a, b), a, b) — iz(a) A(F0|d(f, a), CRS[Ifl/z,m — l,p, vAva, h(a)]) > 0
b

W (Z,X) = W(Z, a,X)

. Fold(f, a) = fla, -)

26

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

WHIR Folding

Reduce CRS[n, m,p,w, o] to CRS[n/2.m -1, p,w 0]

f:L—>TF
h(X) := Z W(f(X,b), X, b) A
be{0,1}"! h
;O +h() =0
Completeness: Z w(f(b),b) = o then: . Wi Fold(f, o)
b
Soundness: by mutual correlated agreement,
* hO)+h(1) =0, wh.p. it A(f,CRS[n, m, p, W, 6]) > 6 then
. Z W(f(a,b), a, b) = iz(a) A(Fold(f, o), CRS[n/2,m — 1,p, vAva, h(a)]) > o
b W (Z,X) = W(Z, a,X) Unchanged!

. Fold(f, a) = fla, -)

26

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

WHIR Folding

Reduce CRS[n,m, p,w, 6] to CRS[n/2,m -1, p,w,, 0c,]

f:L—>TF
0= 3 wfechrxh

o ﬂ

’ h(0) + h(1) =, ¢

J
L
J
J
)
)

Completeness: ¥ #W(f(b),b) = o then: M} Fold(f, o)
b
Soundness: by mutual correlated agreement,
+ 1) +h(l) =0, w.h.p. if A(f,CRS[n, m, p, W, c]) > & then
. Z v?/(f(a, b), a, b) — 2(&) A(F0|d(f, 0{), CRS[n/Z,m — l,p, vAva, h(a)]) > 0
b

W (Z,X) = W(Z, a,X) Unchanged!

. Fold(f, a) = fla, -)

26

WHIR iteration

WHIR iteration

WHIR iteration

WHIR iteration

J_

Folding k times by 2

J_

Folding k times by 2

27

J_

Folding k times by 2

27

J_

Folding k times by 2

g is over a domain of
. n n
size — > —
2 2k

27

J_

Folding k times by 2

Claimed to be_ g is over a domain of
same polynomial n)

size — > —
2 T Dk

27

J_

Folding k times by 2

Claimed to be Jog 4|:|:|:|:|:|:|_> g is over a domain of
same polynomial n)

size — > —
2 T Dk

Domain shift

—_—
—

27

J_

Folding k times by 2

Claimed to be Jog 4|:|:|:|:|:|:|_> g is over a domain of
same polynomial n)

size — > —
2 T Dk

Domain shift

—_—
— Makes queries to f

27

J_

Folding k times by 2

2me polynom § I[[[[F—
same polynomial
Domain shift

—
— Makes 7 queries to f

Returns a list of claims on g Wy, 09); .., (Wg, 0p)

27

J_

Folding k times by 2

2me polynom § I[[[[F—
same polynomial
Domain shift

—
— Makes 7 queries to f

Returns a list of claims on g (Wl’ 61)’ Tt (Wf’ 6&”)
Batching

(W™, 6%)

27

WHIR iteration

J_

Folding k times by 2

2me polynom § I[[[[F—
same polynomial
Domain shift

—
— Makes 7 queries to f

Returns a list of claims on g (Wl’ 61)’ Tt (Wf’ Gf)
Batching

(W™, 6%)

As in STIR, rate
Improves!

Recurse g € CRS g, m — Kk,

WHIR iteration

J_

Folding k times by 2

Fold(f, ay, ...

Clielnise. i b g is over a domain of
same polynomial . n n
size 5 > ?
Domain shift
-_—
— Makes 7 queries to f
Returns a list of claims on g (Wl’ 61)’ T (Wf’ 6&”)
Batching
(W=, %)

As in STIR, rate
Improves!

n
Recurse g € CRS 5, m — Kk,

Domain shifting

Domain shifting

f:L—TF
Claimon f: (W, 0) [[TTTTTT]

Domain shifting

Claim on f: (W, 0)

f:L—TF
[[TTTTTT]

m

Domain shifting

Claim on f: (W, 0)

f:L—TF
[[TTTTTT]

28

g:L*—>TF
ENENNEEENEEN

Output claims on g:
(‘;‘\/19 61)9 IO (‘;‘\/fa Gf)

Domain shifting

Claim on f: (W, o) [TTTTTTT]1 [TTT T 1T 1] Output claims on g:

(‘;‘\/19 61)9 IO (‘;‘\/fa Gf)

f and g claimed to be evaluations of same polynomial. Want to output claims on g.

Goal: If fis (1 — \/ﬁ)-far from CRS[|L|, m, p,w, 6], w.h.p. g is (1 — ﬁ)-far from CRS[| L* |, m, p’, W,, 5;] for at
least one i € [}

28

Domain shifting

Claim on f: (W, o) [TTTTTTT]1 [TTT T 1T 1] Output claims on g:

(‘;‘\/19 61)9 IO (‘;‘\/fa Gf)

f and g claimed to be evaluations of same polynomial. Want to output claims on g.

Goal: If fis (1 — \/ﬁ)-far from CRS[|L|, m, p,w, 6], w.h.p. g is (1 — ﬁ)-far from CRS[| L* |, m, p’, W,, 5;] for at
least one i € [}

Assume there is unique polynomial p that is (1 — \/;’)—close to g. 00D subprotocol (next)

28

Domain shifting

Claim on f: (W, o) [TTTTTTT]1 [TTT T 1T 1] Output claims on g:

(‘;‘\/19 61)9 IO (‘;‘\/fa Gf)

f and g claimed to be evaluations of same polynomial. Want to output claims on g.

Goal: If fis (1 — \/ﬁ)-far from CRS[|L|, m, p,w, 6], w.h.p. g is (1 — ﬁ)-far from CRS[| L* |, m, p’, W,, 5;] for at
least one i € [}

Assume there is unique polynomial p that is (1 — \/;’)—close to g. 00D subprotocol (next)

Then, if p satisfies the (W, o)-constraint f must be be (1 — \/,5)—far from it.

28

Domain shifting

f:L—-TF g.L* — |
Claim on f: (W,) BUEBEEE B DE]:.:.] OAutput clalms: on g:
4 (Wi,61) ooy Wy, 0p)

<

f and g claimed to be evaluations of same polynomial. Want to output claims on g.

Goal: If fis (1 — \/ﬁ)-far from CRS[|L|, m, p,w, 6], w.h.p. g is (1 — \/,;’>-far from CRS[| L* |, m, p’, W,, 5;] for at
least one i € [}

Assume there is unique polynomial p that is (1 — \/;’)—close to g. 00D subprotocol (next)

Then, if p satisfies the (W, o)-constraint f must be be (1 — \/,5)—far from it.

28

Domain shifting

f:L—-TF g.L* — |
Claim on f: (W,) BUEBEEE B DE]:.:.] OAutput clalms: on g:
4 (Wi,61) ooy Wy, 0p)

<

f and g claimed to be evaluations of same polynomial. Want to output claims on g.

Goal: If fis (1 — \/ﬁ)-far from CRS[|L|, m, p,w, 6], w.h.p. g is (1 — \/,;’>-far from CRS[| L* |, m, p’, W,, 5;] for at
least one i € [}

Assume there is unique polynomial p that is (1 — \/;’)—close to g. 00D subprotocol (next)

Then, if p satisfies the (W, o)-constraint f must be be (1 — \/,5)—far from it.

: Just an evaluation constraint which we
New constraints: (i) original constraint (w, o) (i) p(z) = y for some random point z. know how to handle!

28

Domain shifting

f:L—-TF g.L* — |
Claim on f: (W,) BUEBEEE B DE]:.:.] OAutput clalms: on g:
¢ Wi,61) ..., (Wp, 0,)

<

f and g claimed to be evaluations of same polynomial. Want to output claims on g.

Goal: If fis (1 — \/ﬁ)-far from CRS[|L|, m, p,w, 6], w.h.p. g is (1 — \/;’>-far from CRS[| L* |, m, p’, W,, 5;] for at
least one i € [}

Assume there is unique polynomial p that is (1 — \/;’)—close to g. 00D subprotocol (next)

Then, if p satisfies the (W, o)-constraint f must be be (1 — \/,5)—far from it.

: Just an evaluation constraint which we
New constraints: (i) original constraint (w, o) (i) p(z) = y for some random point z. know how to handle!

So, except with probability \/,5 g is (1 — \/;’)—far from CRS[|L* |, m, p’, Wy, 067), ..., (W,, 0,)].

Can amplify to \/,Bt 28

Out Of Domain

Subprotocol to force unique

Out Of Domain

Subprotocol to force unique

Out Of Domain

Subprotocol to force unique

QRSN

Out Of Domain

Subprotocol to force unique

QRSN

AN(G, g, 0*)

Out Of Domain

Subprotocol to force unique

QRSN

29

AN(G, g, 0*)

Out Of Domain

Subprotocol to force unique

QRSN

29

AN(G, g, 0*)

Out Of Domain

Subprotocol to force unique

QRSN

29

AN(G, g, 0*)

Out Of Domain

Subprotocol to force unique

QRSN

29

A(E, g, 0%*)

—

Out Of Domain

Subprotocol to force unique v Johnson bound, this ®
W
g L* ~ [F JETTTT T LT
g
: S
@ 0
@
@
@

29

A(E, g, 0%*)

—

Out Of Domain

Subprotocol to force unique v Johnson bound, this ®
W
g L* ~ [F JETTTT T LT
«F
. “‘
Per] g Lo

29

AN(G, g, 0*)

—
By Johnson bound, this

Out Of Domain
is small o

Subprotocol to force unique

L ” msEEERN
g -b ‘ ““--
. L
. v,
. v
* %
. s
 J L Z
. S
. .
.
. .
. .
. *
.)
. .
'S *

J_

4—

BETF 5 5 i

_— o

* By fundamental theorem of algebra of w.h.p. ®
no pair i, V with i(r) = V(r) o

 Prover "chooses" which codeword ii it
"commits" to

29

AN(G, g, 0*)

—
By Johnson bound, this

Out Of Domain
is small o

Subprotocol to force unique

L ” msEEERN
g -b ‘ ““--
. L
. v,
. v
* %
. s
 J L Z
. S
. .
.
. .
. .
. *
.)
. .
'S *

J_

4—

BETF 5 5 i

_— o

* By fundamental theorem of algebra of w.h.p. ®
no pair i, V with i(r) = V(r) o

 Prover "chooses" which codeword ii it
"commits" to

29

Out Of Domain

Subprotocol to force unique

QRSN

J_

4—

pelF

—_—

* By fundamental theorem of algebra of w.h.p.

no pair i, v with 7(r) = v(r)

 Prover "chooses" which codeword ii it
"commits" to

Add to list of constraints to enforce!

29

AN(G, g, 0*)

—

By Johnson bound, this

IS small

5>I<

Batching

Pick your favourite sumcheck batching

30

Batching

Pick your favourite sumcheck batching

g:L—-T Sumcheck claims on g:

[TTTTITTITTTITT (vpops ... Obpop)

30

Batching

Pick your favourite sumcheck batching

g:L—-T Sumcheck claims on g:

[TTTTTTTTTITT] (pop)s..s (g 0p)

Batching

30

Batching

Pick your favourite sumcheck batching

g:L—-T Sumcheck claims on g:

[LIITTTTTTITTT (o), (g 0p)

Batching

g.L—-TF
[IIIIIIITITI] sumcheck claimon g: (W¥, o¥)

30

Batching

Pick your favourite sumcheck batching

g:L—-T Sumcheck claims on g:

[LIITTTTTTITTT (o), (g 0p)

Batching

g.L—-TF
[IIIIIIITITI] sumcheck claimon g: (W¥, o¥)

Many ways this can be done: we chose random linear combination.

30

WHIR

WHIR */

31

WHIR */

31

WHIR

31

WHIR */

Domain shift

S ———
—

31

WHIR */

Domain shift

S ———
—

Batching

31

WHIR

Domain shift
—_—,
 —

Batching

n
Recurse g € CRS 5’ m — Kk,

Application: 2-I0P

High soundness compilation using constrained codes

32

Application: 2-I0P

High soundness compilation using constrained codes

4 O

2-lI0OP

32

Application: 2-I0P

High soundness compilation using constrained codes

4 O

2-lI0OP

32

Application: 2-I0P

High soundness compilation using constrained codes

4 O

>-IOP
P

— -
|

32

Application: 2-I0P

High soundness compilation using constrained codes

4 O

>-IOP
P

N E
' G

N -

32

Application: 2-10P _

High soundness compilation using constrained codes

g 5_|OP A
P
] .
=
q
] .
_ D

Verifier can ask sumcheck queries

.e. send w and receive Z w(f(b), b)
b

32

Application: 2-10P _

High soundness compilation using constrained codes

g 5_|OP A
P
— | -
=
q
] .
_ D

Verifier can ask sumcheck queries

.e. send w and receive Z w(f(b), b)
b

32

Application: 2-10P _

High soundness compilation using constrained codes

g 5_|OP A
P
= =
PZIOP) A VZIOP
q
] .
_ Y

Verifier can ask sumcheck queries

.e. send w and receive Z w(f(b), b)
b

32

Application: 2-10P _

High soundness compilation using constrained codes

g 5_|OP A
p
N
I_,
_ Y

Verifier can ask sumcheck queries

.e. send w and receive Z w(f(b), b)
b

32

Application: 2-10P _

High soundness compilation using constrained codes

g 5_|OP A

P
o -
- »

_ J

Verifier can ask sumcheck queries

.e. send w and receive Z w(f(b), b)
b

32

Application: 2-I0P

High soundness compilation using constrained codes

g 5-IOP h f \ —

P
o -
- »

_ J

Verifier can ask sumcheck queries

.e. send W and receive Z w(f(b),b)) k)
b

32

Application: 2-I0P

High soundness compilation using constrained codes

g 5-IOP h f \ —

P
o -
- »

_ J

Verifier can ask sumcheck queries

.e. send W and receive Z w(f(b),b)) k)
b

32

Application: 2-10P _

High soundness compilation using constrained codes

g 5-IOP h f \ —

P
o -
- »

_ J

f-L—->TF

Verifier can ask sumcheck queries

.e. send W and receive Z w(f(b),b)) k)
b

32

Application: 2-I0P

High soundness compilation using constrained codes

g 5_|OP A f

f-L—->TF

P
o -
- »

_ J

Verifier can ask sumcheck queries

.e. send w and receive Z w(f(b), b) \
b

32

Application: 2-I0P

High soundness compilation using constrained codes

g 5-IOP h : \ —
) P \%
P
m - jiL-F
- » 4 W
yel

_ J

Verifier can ask sumcheck queries

.e. send W and receive Z w(f(b),b)) k)
b

32

Application: 2-I0P

High soundness compilation using constrained codes

g 5-IOP h : \ —
p

Q>
M<
o

S

Verifier can ask sumcheck queries

.e. send w and receive Z w(f(b), b)
b

Constrained (batched) Reed—Solomon proximity
teston f

32

Application: 2-10P _

High soundness compilation using constrained codes Q: Can we use this to do more
efficient arithmetizations?
\
s >-10P f \ -
P V

>

Verifier can ask sumcheck queries

.e. send w and receive Z w(f(b), b)
b

Constrained (batched) Reed—Solomon proximity
teston f

32

Review: FRI iteration

Review: FRI iteration

f:L—->TF
[TTTTTTT]

Review: FRI iteration

f:L—->TF
[TTTTTTT]

0

Review: FRI iteration

*
llllllllllllllll

Fold(f,)

33

Review: FRI iteration

*
llllllllllllllll

Fold(f,)

f/‘lj]]—’

33

Review: FRI iteration

f:L—->TF

Claimed to be

/
same polynomial f —I:l:l:l:l—b

33

Review: FRI iteration

f:L—->TF

*
IIIIIIIIIIIIIII;
]

Check that
Fold(f, @)(z) = f'(z) at

Claimed to be : : 2k
t points in L

; /
same polynomial f

33

Review: FRI iteration

f:L—->TF

Q
................
.]
H []
M . M
.

Check that
Fold(f, @)(z) = f'(z) at

Claimed to be _ : ok
t points in L

same polynomial

n
Recurse on f € RS ?’m — k, p]

33

Review: FRI iteration

f:L—->TF

Check that
Fold(f, @)(z) = f'(z) at

Claimed to be _ ok
t points in L

same polynomial

n
Recurse on f € RS ?,m — k, p]

Disclaimer: in full FRI
consistency checks are
correlated between rounds.

33

Review: FRI iteration

Soundness:

FiL—>F Suppose that ' € RS[n/2%, m — k, p].

D]]:l:l:l:l If fis o-far from RS[n, m, p],

Fold(f, @) must be o-far from
RS[n/2%, m — k, p]

Check that
Fold(f, @)(z) = f'(z) at

Claimed to be _ ok
t points in L

; /
same polynomial f

n
Recurse on f € RS ?,m — k, p]

Disclaimer: in full FRI
consistency checks are
correlated between rounds.

33

Review: FRI iteration

Soundness:

Suppose that f' € RS[n/2%, m — k, p].
f:L—-TF

D]]:l:l:l:l If fis o-far from RS[n, m, p],

Fold(f, @) must be o-far from
RS[n/2%, m — k, p]

Then, " and Fold(f,) differ on

Check that a O-fraction.

Fold(f, @)(z) = f'(z) at

Claimed to b .
o tpoints in sz Soundness error is (1 — 5)t

; /
same polynomial f

Recurse on f € RS %m — k, p]

Disclaimer: in full FRI
consistency checks are
correlated between rounds.

33

Review: FRI iteration

Soundness:

FiL—>F Suppose that ' € RS[n/2%, m — k, p].

D]]:l:l:l:l If fis o-far from RS[n, m, p],

Fold(f, @) must be o-far from
RS[n/2%, m — k, p]

Then, f" and Fold(f, a) differ on

Check that a O-fraction.

Fold(f, @)(z) = f'(z) at

Claimed to b .
St tpoints in sz Soundness error is (1 — 5)t

; /
same polynomial f

n
Recurse on f € RS ?’m — k, p]

To get soundness error ¢, < 27

_ | set§:=1—,/pandt:=
Disclaimer: in full FRI —log\/ﬁ

consistency checks are
correlated between rounds.

33

