
WHIR 🌪
Proximity testing for Reed–Solomon+

1

Giacomo FenziGal Arnon

Alessandro Chiesa Eylon Yogev



Motivation



SNARKs
Succinct Non-interactive Arguments of Knowledge

3



SNARKs
Succinct Non-interactive Arguments of Knowledge

• Want to show “knowledge” of  s.t. w (x, w) ∈ R

3



SNARKs
Succinct Non-interactive Arguments of Knowledge

• Want to show “knowledge” of  s.t. w (x, w) ∈ R e.g. R := {(x, w) : 𝖲𝖧𝖠𝟥(w) = x}

3



SNARKs
Succinct Non-interactive Arguments of Knowledge

• Want to show “knowledge” of  s.t. w (x, w) ∈ R e.g. R := {(x, w) : 𝖲𝖧𝖠𝟥(w) = x}

P V

(x, w) ∈ R

x

3



SNARKs
Succinct Non-interactive Arguments of Knowledge

• Want to show “knowledge” of  s.t. w (x, w) ∈ R e.g. R := {(x, w) : 𝖲𝖧𝖠𝟥(w) = x}

πP V

(x, w) ∈ R

x

3



SNARKs
Succinct Non-interactive Arguments of Knowledge

• Want to show “knowledge” of  s.t. w (x, w) ∈ R e.g. R := {(x, w) : 𝖲𝖧𝖠𝟥(w) = x}

π
0/1

P V

(x, w) ∈ R

x

3



SNARKs
Succinct Non-interactive Arguments of Knowledge

• Want to show “knowledge” of  s.t. w (x, w) ∈ R

• Need* to add a random oracle.

e.g. R := {(x, w) : 𝖲𝖧𝖠𝟥(w) = x}

π
0/1

P V

(x, w) ∈ R

x

f

3



SNARKs
Succinct Non-interactive Arguments of Knowledge

• Want to show “knowledge” of  s.t. w (x, w) ∈ R

• Need* to add a random oracle.

e.g. R := {(x, w) : 𝖲𝖧𝖠𝟥(w) = x}

π
0/1

P V

(x, w) ∈ R

x

f

• Can be based on many 
computational assumptions.

3



SNARKs
Succinct Non-interactive Arguments of Knowledge

• Want to show “knowledge” of  s.t. w (x, w) ∈ R

• Need* to add a random oracle.

e.g. R := {(x, w) : 𝖲𝖧𝖠𝟥(w) = x}

π
0/1

P V

(x, w) ∈ R

x

f

• Can be based on many 
computational assumptions.

• Today: we limit ourselves to 
pure ROM SNARKs

3



SNARKs
Succinct Non-interactive Arguments of Knowledge

• Want to show “knowledge” of  s.t. w (x, w) ∈ R

• Need* to add a random oracle.

e.g. R := {(x, w) : 𝖲𝖧𝖠𝟥(w) = x}

π
0/1

P V

(x, w) ∈ R

x

f

• Can be based on many 
computational assumptions.

• Today: we limit ourselves to 
pure ROM SNARKs

• Will call these hash-based 
SNARKs.

3



Hash-based SNARKs
In practice

4



Hash-based SNARKs
In practice
Instantiating random oracle gives amazing SNARKs:

4



Hash-based SNARKs
In practice
Instantiating random oracle gives amazing SNARKs:

• Transparent setup (choice of hash)

4



Hash-based SNARKs
In practice
Instantiating random oracle gives amazing SNARKs:

• Transparent setup (choice of hash)

• Highly efficient implementations (no public-key crypto)

4



Hash-based SNARKs
In practice
Instantiating random oracle gives amazing SNARKs:

• Transparent setup (choice of hash)

• Highly efficient implementations (no public-key crypto)

• Plausibly post-quantum secure (secure in QROM)

4



Hash-based SNARKs
In practice
Instantiating random oracle gives amazing SNARKs:

• Transparent setup (choice of hash)

• Highly efficient implementations (no public-key crypto)

• Plausibly post-quantum secure (secure in QROM)

Used to secure billions of dollars in real-world blockchains:

4



Hash-based SNARKs
In practice
Instantiating random oracle gives amazing SNARKs:

• Transparent setup (choice of hash)

• Highly efficient implementations (no public-key crypto)

• Plausibly post-quantum secure (secure in QROM)

Used to secure billions of dollars in real-world blockchains:

4



Constructing SNARKs
[BCS16] Construction

5



Constructing SNARKs
[BCS16] Construction

IOP

5



Constructing SNARKs
[BCS16] Construction

P V

IOP

5



Constructing SNARKs
[BCS16] Construction

P V

IOP

5



Constructing SNARKs
[BCS16] Construction

P V

IOP

5



Constructing SNARKs
[BCS16] Construction

P V

IOP

5



Constructing SNARKs
[BCS16] Construction

P V

IOP

5



Constructing SNARKs
[BCS16] Construction

P V

IOP

5



Constructing SNARKs
[BCS16] Construction

P V

IOP

5



Constructing SNARKs
[BCS16] Construction

P V

IOP

5



Constructing SNARKs
[BCS16] Construction

P V

IOP

5



Constructing SNARKs
[BCS16] Construction

P V

IOP

5



Constructing SNARKs
[BCS16] Construction

P V

IOP

BCS

5



Constructing SNARKs
[BCS16] Construction

P V

IOP

BCS

P Vπ
0/1

(x, w) ∈ R

x

f

STARK

5



Constructing SNARKs
[BCS16] Construction

P V

IOP

BCS

P Vπ
0/1

(x, w) ∈ R

x

f

STARK

Proof length 


Queries 

𝗅 ≈ O(n)

𝗊 ≈ O(log n)
5



Constructing SNARKs
[BCS16] Construction

P V

IOP

BCS

P Vπ
0/1

(x, w) ∈ R

x

f

STARK

Proof length 


Queries 

𝗅 ≈ O(n)

𝗊 ≈ O(log n)

Large, think 224

Small, think ~400

5



Constructing SNARKs
[BCS16] Construction

P V

IOP

BCS

P Vπ
0/1

(x, w) ∈ R

x

f

STARK

Proof length 


Queries 

𝗅 ≈ O(n)

𝗊 ≈ O(log n)
Argument size O(λ ⋅ 𝗊 ⋅ log 𝗅)

Large, think 224

Small, think ~400

5



Constructing SNARKs
[BCS16] Construction

P V

IOP

BCS

P Vπ
0/1

(x, w) ∈ R

x

f

STARK

Proof length 


Queries 

𝗅 ≈ O(n)

𝗊 ≈ O(log n)
Argument size O(λ ⋅ 𝗊 ⋅ log 𝗅)

Large, think 224

Small, think ~400

5

Small, tens of KiB



Constructing SNARKs
[BCS16] Construction

P V

IOP

BCS

P Vπ
0/1

(x, w) ∈ R

x

f

STARK

Proof length 


Queries 

𝗅 ≈ O(n)

𝗊 ≈ O(log n)
Argument size O(λ ⋅ 𝗊 ⋅ log 𝗅)

Large, think 224

Small, think ~400
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Comparison with prior work

Queries Verifier Time Alphabet

BaseFold

FRI

STIR

WHIR

q𝖡𝖥 = O(λ ⋅ m)

q𝖥𝖱𝖨 = O ( λ
k

⋅ m)
q𝖲𝖳𝖨𝖱 = O ( λ

k
⋅ log m)

q𝖶𝖧𝖨𝖱 = O ( λ
k

⋅ log m)

O(q𝖡𝖥)

O(q𝖥𝖱𝖨 ⋅ 2k)

O(q𝖲𝖳𝖨𝖱 ⋅ 2k+λ2 ⋅ 2k)

O(q𝖶𝖧𝖨𝖱 ⋅ (2k + m))

𝔽2

𝔽2k

𝔽2k

𝔽2k
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Super fast verifier
• The WHIR verifier typically runs in a few hundred microseconds.


• Other verifiers require several milliseconds (and more).


• Without compromising prover time & argument size


• As a PCS for degree :224

16

Schemes with trusted 
setup using pairings!
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Remark: BaseFold 
implementation is not 

fully optimised
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Summary

WHIR 🌪: a new IOPP for CRS codes.

Query complexity: 

 

Verifier complexity: 

O ( λ
k

⋅ log m)

O(q𝖶𝖧𝖨𝖱 ⋅ (2k + m))

• State-of-the-art argument size and hash complexity

• Fastest verification of any PCS (including trusted setups!)

• Enables high-soundness compilation for Σ-IOP 

Σ-IOP CRS IOPP 
(WHIR 🌪) IOP+ =
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ŵ( ̂f(X, b), X, b)

h(0) + h(1) =? σ

𝖥𝗈𝗅𝖽( f, α)
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ŵ( ̂f(X, b), X, b)

h(0) + h(1) =? σ

𝖥𝗈𝗅𝖽( f, α)
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ŵ( f(α, b), α, b) = ĥ(α)
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WHIR Folding

26

f : L → 𝔽

P Vα

Interleave sumcheck with FRI folding, 
similar to BaseFold, Hyperplonk, Gemini

Completeness:  then:∑
b
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Domain shifting

 and  claimed to be evaluations of same polynomial. Want to output claims on .f g g

Goal: If  is -far from , w.h.p.  is -far from  for at 

least one 
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r ← 𝔽

β ∈ 𝔽 δ*

Λ(𝒞, g, δ*)

• By fundamental theorem of algebra of w.h.p. 
no pair  with 


• Prover "chooses" which codeword  it 
"commits" to

̂u, ̂v ̂u(r) = ̂v(r)

̂u

Add to list of constraints to enforce!
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By Johnson bound, this 
is small
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(ŵ1, σ1), …, (ŵℓ, σℓ)
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Batching

g : L → 𝔽
Sumcheck claim on : g (ŵ*, σ*)



Batching
Pick your favourite sumcheck batching
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g : L → 𝔽 Sumcheck claims on :g
(ŵ1, σ1), …, (ŵℓ, σℓ)

Batching

g : L → 𝔽
Sumcheck claim on : g (ŵ*, σ*)

Many ways this can be done: we chose random linear combination.



WHIR 🌪

31



WHIR 🌪

31

f : L → 𝔽

P V α1, …, αk ← 𝔽αi

𝖥𝗈𝗅𝖽( f, α1, …, αk)

ĥi
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b
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ŵ( ̂f(b), b)

𝖯Σ𝖨𝖮𝖯

̂p

P V

32

Generalizes univariate and 
multilinear PIOPs at no extra cost!



̂q

̂p

Application: Σ-IOP
High soundness compilation using constrained codes

𝖯Σ𝖨𝖮𝖯 𝖵Σ𝖨𝖮𝖯

Σ-IOP

Verifier can ask sumcheck queries 

i.e. send  and receive ŵ ∑
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b
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y ∈ 𝔽

Constrained (batched) Reed—Solomon proximity 
test on f

32

Generalizes univariate and 
multilinear PIOPs at no extra cost!

Q: Can we use this to do more 
efficient arithmetizations?
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Check that 
 at 

 points in 
𝖥𝗈𝗅𝖽( f, α)(z) = f′￼(z)

t L2k

Disclaimer: in full FRI 
consistency checks are 
correlated between rounds. 

Recurse on  f′￼∈ 𝖱𝖲 [ n
2k

, m − k, ρ]

Then,  and  differ on 
a -fraction. 


Soundness error is 

f′￼ 𝖥𝗈𝗅𝖽( f, α)
δ

(1 − δ)t

Suppose that . 


If  is -far from ,


 must be -far from 

f′￼ ∈ 𝖱𝖲[n/2k, m − k, ρ]

f δ 𝖱𝖲[n, m, ρ]

𝖥𝗈𝗅𝖽( f, α) δ
𝖱𝖲[n/2k, m − k, ρ]

Soundness:

To get soundness error : 

set  and 

ε𝖱𝖡𝖱 ≤ 2−λ

δ := 1 − ρ t :=
λ

−log ρ


